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Abstract

This report presents research results on general serial robotic ma-
nipulators modeled with structural compliances. Two compliant manipulator
modeling approaches, distributed and lumped parameter models, are used in
this study. System dynamic equations for both compliant models are derived
by using the first and second order influence coefficients. Also, the proper-
ties of compliant manipulator system dynamics are investigated. One of the
properties, which is defined as inaccessibility of vibratory modes, is shown
to display a distinct character associated with compliant manipulators. This
property indicates the impact of robot geometry on the control of structural
oscillations. Example studies are provided to illustrate the physical interl;re-

tation of inaccessibility of vibratory modes.

Two types of controllers are designed to control compliant manipu-
lators. These controllers are designed for compliant manipulators modeled by
either lumped or distributed parameter techniques. In order to maintain the
generality of the results, neither linearization is introduced, nor any nonlinear
term is neglected to simplify the controller design problem. The first type con-
troller is built for N-degree-of-freedom robots with known system parameters,
and several distinct control algorithms are introduced. Example simulations
are given to demonstrate the conﬁroller performance. The second type con-
troller is also built for general serial robot arms and is adaptive in nature
which can estimate uncertain payload parameters on-line and simultaneously

maintain trajectory tracking properties. The relation between manipulator
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motion tracking capability and convergence of parameter estimation proper-
ties is discussed through example case studies. The effect of control inpu:

update delays on adaptive controller performance is also studied.
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Chapter 1

Introduction

The goal of building efficient robots draws growing attention to the
study of lightweight robotic manipulators. In order to maintain operational
precision, traditional industrial robots are built relatively rigid at the cost of
heavy weight and slow operational speed. In addition, the payload capacity
is generally limited to as small as 1% of the manipulator weight to avoid
deflections caused by inertial loading. Apparently, such robots consume large
driving power and are inefficient to operate. As a remedy, the next genera-
tion robots tend to be lighter, faster, and have larger payload-to-weight ratios.
However, a lightweight structure is subject to deformation and oscillations un-
der high-speed inertial load. Therefore, building a high precision lightweight
robot demands a thorough study of the inherent compliance problems from
mechanism design to control issues. So far, lightweight manipulators are used
mainly in outer-space exploration where inertial load and precision are not of
concern; yet, development for high precision industrial applications is still at
the infancy stage. This report will present research results on the dynamic
modeling and controller design of serial robotic manipulators modeled with
structural compliances. In this report, we will refer to this type of robotic

arms as compliant manipulators.

This work covers several major topics. Literature survey on the

study of compliant manipulators will be presented in this chapter. The
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methodologies and algorithms used by researchers will be summarized. The
second chapter will introduce some basic and handy tools for dynamic model-
ing of robotic manipulators. The third chapter will derive compliant manipu-
lator dynamics by both distributed and lumped parameter models. Based on
the derived system dynamics, the inherent dynamic properties will be inves-
tigated in the fourth chapter. The fifth chapter will design different control
laws for compliant manipulators with known system parameters. In the sixth
chapter, an adaptive algorithm will be introduced, which is capable of on-line
motion control and payload estimation. In order to bujld the adaptive con-
troller, system dynamics of uncertain parameters and an estimation method
are also presented in the sixth chapter. The final chapter will summarize
the effort of this work. Portions of this work have been reported in [Lin,
Tosunoglu, and Tesar. 1990, a), [Lin, Tosunoglu, and Tesar, 1990, b}, [To-
sunoglu, Lin, and Tesar, 1990, a), [Tosunoglu, Lin, and Tesar, 1990, b], [Lin.
Tosunoglu, and Tesar, 1989}, and [Tosunoglu, Lin, and Tesar, 1989], which.
due to their distinct approach, are not included in the following literature

survey.

1.1 Dynamic Modeling Survey: Distributed Parame-
ter Model

The structural flexibility modeling of a compliant manipulator con-
centrates on two elementary components: links and Joints. Lack of structural
rigidity in link design causes link compliance. On the other hand, flexibility
of power transmission is usually the major contributor of joint compliance.
Various models are proposed by researchers to describe link and joint com-
pliances. Nevertheless, they could be categorized into two main disciplines:

distributed and lumped parameter models. Both models have been applied



to model link compliance. However, joint compliance is always modeled by a
lumped parameter model. In distributed parameter models, a link is modeled
as a continuous beam which has infinite degree-of-freedom (DOF) oscillations.
Generally, finite assumed modes are chosen to discretize the oscillations. The
chosen mode shapes are mainly admissible functions satisfying given geomet-
ric boundary conditions. The assumed mode method not only reduces system
dimension, but also separates the spatial and time variables of each vibratory
mode, consequently, the system dynamics could be expressed as a function
of generalized coordinates composed of nominal joint parameters and vibra-
tory amplitudes. Some of the activities in distributed parameter model are
reported in this section. [Hughes, 1979] models each compliant link as a
continuous system and derives general compliant manipulator dynamics by
the Newton-Euler approach. He computes the inertial dynamic force at each
compliant link first, and then finds the compliant dynamics from flexibility
kernel. In this work, the velocity coupling terms are neglected under slow mo-
tion assumption. [Sunada and Dubowsky, 1981] use a finite element model
and the NASTRAN software package to study compliant mechanism motion.
[Book, 1984] uses the Bernoulli-Euler Theory to model a compliant link under
lateral bendings and longitudinal elongation. The rotatory inertial effect is
neglected in the system dynamics. In this work, the author uses the same
modal amplitude in all directional modal functions. The 4 x 4 homogeneous
transformation matrix is applied to perform kinematic analysis. [Low, 1987]
also uses Bernoulli-Euler Theory to build compliant system dynamics. In
his recent work, [Low, 1989] presents solution schemes for inverse dynam-
ics and kinematics. The author also discusses the assumed mode solution
under different boundary conditions. [Naganathan and Soni, 1987] analyze

lateral bendings and longitudinal elongation of a compliant link by the finite
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element approach. Following the Timoshenko Beam Theory, the rotatory in-
ertia and shear effects are included. The system dynamics are derived by
Galerkin’s method. [Kane, Ryan, and Banerjee, 1987] model a spatial ma-
nipulator with a compliant last link. Instead of using the Bernoulli-Euler
Theory, the shear and centrifugal stiffening effects are included in the study.
However, by applying the small deflection assumption, all vibratory coupling .
terms are neglected by the authors. In the above examples, multi-directional
oscillations of the compliant link are considered. Interestingly, a great por-
tion of modeling and control works of compliant manipulators focus on planar
one- or two-link arms, and in these works only unilateral bending is investi-
gated. For example, [Rakhsha, and Goldenberg, 1985] model a one-link arm
in transverse bending. The compliant link is treated as a cantilever beam.
and Newton-Euler approach is applied to derive system dynamics. [Usoro,
Nadira, and Mahil, 1986] use the finite element approach to model a planar
arm lateral bending. The Hermitian polynomials are chosen as mode shapes.
The results are applied on a two-link planar arm example. [Nicosia, Tomei.
and Tornambe, 1986] employ monomial mode shapes up to fourth orders to
model a planar arm with lateral bending. [Benati and Morro, 1988] model a
planar link as clamped-free beam with end-point mass whose lateral bending
is depicted by two eigenmodes. Since two modes are suggested, the end-point
deflection and tangent angle are used as the generalized coordinates. The
model is simulated on a two-link planar arm with a compliant link followed
by a rigid link. Instead of a one-link arm, [Yuh, Young, and Baek, 1989]
model a cylindric planar arm composed of one pivot joint and one slider. The
sliding link is compliant whose unilateral bending is modeled as a cantilever
beam. Due to the sliding motion, the compliant link length changes continu-

ously, therefore, the mode shapes are normalized for a unit link length, and
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" only the first two primary modes are modeled. To verify their analytic model,
laboratory experiments are conducted by the authors, in which an accelerom-
eter is added to the tip of the arm, whose double integration provide the tip
displacement. The experimental results show good agreement with the ana-
lytic model. [Wang and Vidyasagar, 1988] study the dynamic model of a five
DOF mechanism which is composed of a 4-bar linkage with a rotating base.
The output link is flexible and bends in the direction perpendicular to the
plane of the 4-bar. The link compliance is defined following the Bernoulli-
Euler Theory. [Yang and Donath, 1988] model one-link arm dynamics by
considering both joint and link compliances. The link deflection is described
by the Bernoulli-Euler Theory; the modal eigenvalues and eigenfunctions are
derived based on the given geometric and natural boundary conditions. The
authors suggest that the first two modes give fair representation of link de-
flection. Their simulation results show that the first mode amplitude is about
ten times the second mode magnitude. Since both clamped-free and pinned-
free boundary conditions have been used in link compliance study, [Bellezza,
Lanari, and Ulivi, 1990] derive the exact solutions of one-link arm vibratory
dynamics by using both boundary descriptions. After comparing the solu-
tions, the authors conclude that both results are equivalent after coordinate
transformation. Another research topic in distributed parameter model is
how many assumed modes should be used so that system dynamics have an
acceptable level of accuracy and manageable size. Some works in this dis-
cipline are presented here. [Hastings, Dorsey, and Book, 1989] use balanced
realization to identify the model order required for a compliant system. They
linearize general compliant system dynamics, and by the assumption that
the linearized system is controllable and observable, the number of dominant

modes are identified from the solution of the linearized dynamic equations
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by the singular values decomposition technique. [Tsujisawa and Book. 1989)
apply the reduced order method to decide the dominant modes of a specific
robot called RALF (Robotic Arm, Large and Flexible) which is a two DOF
parallel mechanism with two ten-foot long links. The report suggests that
two modes for each link is optimal from the control point of view. In their
experimental study, it is observed that the spectrum ratio of the first mode to
the second mode is ten to one. Also, [Krishnan and Vidyasagar, 1988] derive
a reduced order model for a single-link arm by Hankel norm minimization.
Finally, for on-line motion control, the vibratory states need to be identified.
Regarding this subject, [Hastings and Book, 1986] use strain-gauge measure-
ments and a reduced order observer to reconstruct the modal amplitudes and
velocities, and [Hastings and Ravishankar, 1989] suggest several link deflec-
tion measurement methods and discuss the effect of the measurement tech-
nique on model order estimation. According to the works surveyed in this
report, various deflection measurement equipments have been used, which
include strain gauges, accelerometers, laser-interferometers, photodetectors.

piezoelectric detectors, and vision systems.

1.2 Dynamic Modeling Survey: Lumped Parameter
Model

Ideally link oscillations are composed of infinite modes, yet, the first
fundamental mode generally dominates most of the elastic energy as reported
by [Tsujisawa and Book, 1989] and [Yang and Donath, 1988]. Additionally.
relatively high energy is required to bend a robotic link into high order mode
shapes. Also, structural damping makes higher modes difficult to detect;
therefore, a lumped parameter model is often used on compliant links to

create an efficient dynamic description suitable for real-time motion control.
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Besides modeling links, a lumped parameter model is frequently used to define
joint compliance. In a lumped parameter model, each structural compliance
is replaced by an equivalent spring. The two types of springs mostly used are
translational and torsional springs. The former causes linear deflection and
the later creates torsional deformation. The stiffness of the modeled spring
is evaluated by either elemental stress-strain relations or by experimental

identification. Some representative works are listed below.

[Tesar, 1978] uses lumped parameters to model an N DOF pla-
nar arm with compliant links. The loads at the distal end of each link are
analyzed first, then the subjected deformations are derived from a static can-
tilever beam deflection relation. [Fresonke, Hernandez, and Tesar, 1988 fur-
ther extend this approach to cover the deformations of a spatial mechanism
with seven possible deflections at each link, i.e., one joint deformation and
six distal end deflections and twistings. Since static load and deformation
relations are used, this approach is termed quasi-static deflection analysis.
Since quasi-static deflection is considered to be the major structural distur-
bance to end-point precession, it should be compensated for during motion
control. Therefore, [Hernandez, 1989] develops real-time computation soft-
ware to evaluate the end-effector deflection under inertial and external loads.
In the lumped parameter model, the structural stiffnesses could be evalu-
ated from elemental stress-strain relation. However, for an assembled robot,
the elemental stiffness matrices are difficult to obtain analytically. There-
fore, metrology approaches are applied to obtain the modeled spring stiffness
values. [Behi, 1985] experimentally identifies the lumped parameters of a T3-
776 robotic manipulator. Modal analysis is employed to identify the natural
frequencies and modal amplitudes of the excited manipulator. The experi-

mental data are fed into the lumped model to obtain system parameter values.
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Instead of using frequency domain analysis, [Sklar, 1988] applies end-point
loads on a static T3-776. A force sensor attached to the wrist reads the foree
and torque components along each orthogonal direction. The resultant hand
deflections are measured by twin theodolite systems. From both force and
deflection data, the global compliance matrix could be obtained, which in
turn produces the modeled stiffness values after inverse kinematic operation.
In order to obtain averaged stiffness values, the tests are repeated at dif-
ferent robot configurations and external loads. Similar metrology activities
are reported by [Good, Sweet, and Strobel, 1984] and [Elmaraghy and Johns,
1988]. The lumped parameter model is also applied to the study of the Spatial
Shuttle Remote Manipulator System (RMS). [Book, 1979] models the RMS
as a massless chain connecting two end-point masses, 1.e., the Orbiter and
payload. The global hand compliance matrix is derived by using 4 x 4 ho-
mogeneous transformation matrices. Similarly, [Sellhorst, 1982] describes the
compliances of the RMS as three linear torsional springs and studies payload
motion response subjected to the thrust fired on Orbiter. More studies on
lumped parameter model could be found. For example, [Huston, 1980] mod-
els multibody dynamics by assuming that each pair of bodies is connected
by three translational and three torsional springs. The system dynamics are
derived by Kane’s partial velocity and partial angular velocity approaches
along with the principle of virtual work. The result is applied in [Kelly and
Huston, 1981] to derive manipulator dynamics for a six-link arm. In this
work, the stiffness values are derived from elemental stiffness relations. The
elemental stiffness matrix is also used by [Shahinpoor and Meghdari, 1988)
to derive the global hand stiffness matrix. Instead of using one set of lumped
parameters for each compliant link, [Huang and Lee, 1988] suggest to divide

a compliant link into several lumped parameter segments to obtain a more



accurate model.

1.3 Survey on Compliant Manipulator Control

Besides dynamic modeling, a great portion of research on compli-
ant manipulators is carried out on motion control. However, unlike modeling
techniques, various controllers have been designed and tested numerically
or experimentally. According to the control algorithm used, the following
surveyed reports are classified into optimal control, singular perturbation
method, external feedback linearization, inverse dynamics, quasi-static deflec-
tion compensation, resonance avoidance control, 1inem‘iied gystem dynamics

control, and adaptive control techniques.

1.3.1 Optimal Control

One special character of one-link flexible arms is that system dy-
namics contain no coupling terms. Therefore, after modal decomposition,
the system dynamics are reduced to a linear time-invariant system. From
that process, many researchers have discovered an interesting property that
for one-link arms the transfer function between tip output and actuator input
has non-minimum phase zeros. This means that for a given tip trajectory, the
inverse dynamics could not be defined directly because the inverse transfer
function is unstable. Hence, optimal control is used by some researchers to
control the tip motion of one-link arms. One of the most famous studies in
this area is reported by [Cannon and Schmitz, 1984] who model a one-link arm
as a pinned-free beam. The Bernoulli-Euler Theory is used to derive system
flexibility dynamics. Then the dynamic equations are decoupled by orthogo-

nal modes. The decoupled system parameters are identified experimentally.
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Finally, the tip motion is controlled by an optimal algorithm. Similar works
on onc-link arin are reported by [Sakawa, Matsuno, and Fukushima, 1985],
[Chassiakos and Bekey, 1986], [Lee and Castelazo, 1987], [Pal, Stephauon,
and Cook, 1988], and [Biswas and Klafter, 1988]. Optimal control is also ap-
plied on a multi-DOF planar mechanism containing a compliant beam as the
last link, such as reported by [Matsuno, Fukushima, Kiyohara, and Sakawa,
1987] and [Schmitz, 1989]. However, in both works, flexibility dynamics are

linearized around terminal static states.

1.3.2 Singular Perturbation Method

Compliant manipulator dynamics are composed of two parts: one
basically describes the dynamic balance of driving joints, called the rigid part
dynamics, and the other depicts the dynamic interactions due to structural
flexibility, or the vibratory part dynamics. Each part contains terms of nom-
inal and vibratory parameters. In the singular perturbation method, it is
assumed that the solutions of the vibratory part dynamics, a set of sccond
order differential equations, are stable and called integral manifolds. Because
of the nonlinear couplings and kinematic dependence, it is difficult to solve
integral manifolds explicitly. But it is possible to find their approximations
by expanding the vibratory dynamics around the rigid body mode by using
the Taylor series method. If the structural compliances are small, this ap-
proximation will produce the major part of the integral manifolds in terms of
rigid body parameters. A back substitution of these vibratory mode solutions
into rigid part dynamics converts all vibratory parameters into rigid body dy-
namic parameters. At this point, any control algorithm developed for rigid

manipulators could be applied on the rigid part dynamics. In this process, the
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integral manifolds are assumed stable, therefore, they are not considered in
the rigid part control design. However, the vibratory modes do not necessar-
ily slide on the integral manifolds, hence, a small perturbed control input 1s
applied to force the vibratory modes to track the integral manifolds. In doing
s0, it is assumed that the perturbed inputs are so small that it will not affect
the rigid part’s dynamic response. The drawback of singular perturbation
is that in approximating the integral manifolds high order dynamic parame-
ters are required, for example, fourth order dynamic parameters are used to
produce the first order approximation. For a multi-DOF manipulator, it is
highly demanding to derive such high order dynamic parameters. Thercfore,
this method is used mainly on simple systems such as one-link arms modeled
with link or joint compliance. Some cxamples of this specific subject can
be found in [[Chorasani and Spong, 1985}, [Marino and Spong, 1986} [Spong,
Khorasani, and Kokotovic, 1987), and [Slotine and Hong, 1986] for one-link
arm with a compliant joint; also [De Maria and Siciliano, 1987], [Siciliano and
Book, 1988], and [Khorrami and Ozguner, 1988] for onc-link arms with link
compliance. In the last three reports, the authors model link compliances by

using the Bernoulli-Euler Theory with clamped-free boundary conditions.

1.3.3 External Feedback Linearization

According to [Su, 1982], a nonlinear system could be converted into
an equivalent linear system provided that system dynamics satisfy certain
given conditions. The transformation process is called diffeomorphic coordi-
nate transformation, and nonlinear system rank and involutivity conditions
need to be checked over a special set of vectors derived by Lie brackets to

ensure existence of a nonlinear transfer function. Provided that the transfor-
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mation exits, then the manipulator dynamics could be expressed in term of o
linear, time-invariant, controllable system whose controller is easy to design,
Once a control law is developed for the equivalent linear system, the non-
linear system controller is obtained by an inverse transformation. Although,
the conditions could be checked by tedious but straightforward differentiation,
there is no simple rule guiding the selection of nonlinear transformation func-
tion, or diffeomorphisr.n. The nonlinear compensation, or computed torque
method, of rigid manipulator control is a special application of this technique.
However, for compliant manipulators, this approach is still at a conceptual
stage and is used only on one-link arms with link or joint compliance, such as
reported by [Spoug, 1987} on a one-link arm with compliant joint, [Nicosia,
‘Tomei, and Tornambe, 1989} on one-line arm with flexible link, and [De Luea,

Isidori, and Nicolo, 1985] on conceptual design.

1.3.4 Inverse Dynamics

Inverse dynamics basically is an open loop control scheme, For a
given hand trajectory, the required driving torques are computed along the
trajectory to ensure precise tracking. For rigid manipulators, inverse dynam-
ics 1s mainly solving the inverse kinematics problem and is accomplished in
one iteration. However, for compliant manipulators, structural complianece
causes disturbances to hand motion, and due to the nonlinear interaction
between nominal and vibratory modes, more than one iteration is generally
required to find the final driving torques. For example, in the first iteration,
rigid manipulator assumption is used to find approximated driving torques.
The torques are applied on the compliant manipulator to solve the associated

structural deformation. Then the resultant hand deflectious are compensated
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by adjusting nominal joint motion to maintain tracking precision. The driving
torques of compliant manipulators are evaluated from compensation results.
The process is repeated until an acceptable level of precision is reached. This
technique is applied by [Asada, Ma, and Tokumaru, 1987] on a two-link pla-
nar arm. A similar approach is found in [Dado and Soni, 1986] for multi-link
arms modeled by the finite element method. Instead of time domain ap-
proach, [Bayo and Moulin, 1989] find the transfer function between the tip
and actuator input of a one-link flexible arm in the Laplace domain. Once the
transfer function is defined, the actuator input is comi)uted by convolution
integral for a given tip trace. [De Luca, Lucibello, and Ulivi, 1989] use inverse
dynamics to track various output points other than the end-effector tip. In
their algorithm, the number of oﬁtput states must equal to that of nominal

joints. The tracking stability is also analyzed in this report.

1.3.5 Quasi-Static Deflection Compensation

Quasi-static deflection is considered to be the major contributor of
structural deformation. Some reports suggest compensation of quasi-static
deflection by either off-line trajectory planning or control-in-the-small algo-
rithms. [Gupta, 1987] studies stationary compliant manipulator deflections
under external forces. The hand deflections are compensated by adjusting the
robot configuration. [Pfeiffer, 1989] divides the problem of compliant robot
control into three stages. The first stage plans off-line optimal trajectory for
rigid manipulators and computes the associated driving torques. The second
stage finds the associated structural quasi-static deflection and adjusts joint
variables to compensate the deflection. The last stage linearizes system dy-

namics around the terminal point of task trace and builds an on-line controller



14

for the linearized time-invariant system. This control algorithm is tested on a
two-link planar arm modeled with link and joint compliances. In control-in-
the-small technique, a mechanism performing fine-tuned motion is added to
compliant manipulator design to compensate structural deflection. [Zalucky
and Hardt, 1984] design a link composed of two parallel beams. The distal
ends of the beams are jointed by a hydraulic servo. The rigidity of the link
could be increased by regulating the hydraulic servo. [Oliver, Wysocki, and
Thompson, 1985] replace one grounded pivot joint of a four-bar mechanism,
by a fast moving slider to actively compensate the output link deflection.
[Tlusty and Wegerif, 1986] use a cam mechanism to compensate the deflec-
tion of a T3-776 robot during cutting process. The robot is modeled by a
lumped parameter model. The global hand stiffness matrix is derived first,
then hand deflections are computed form the stiffness matrix together with
cutting forces measured at the wrist. The added cam then compensates the
calculated deflection by providing the cutter with a fast bhut small shiding mo-
tion. In these reports, the fine-tuncd mechanisms are limited to one degree
of freedom. A micromanipulator capable of six-DOF fine-tuned motion i«
designed and analyzed by [Hudgin and Tesar, 1988] and [Han, Traver, and
Tesar, 1989).

1.3.6 Resonance Avoidance Control

A group of activities on compliant manipulators are devoted to strue-
tural resonance study. [Cleghorn, Tabarrok, and Fenton, 1984] analyze the
influence of running speed on the stability of a compliant four-bar mecha-
nism. They solve the eigenvalues of system dynamics and find the associated

running speeds. Through eigenvalue locations, the stable and unstable op-
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cration speeds could be identified. In order to study the induced gcometric
stiffiness effects on system stability, [Anderson, 1985] linearizes system dy-
namics around an equilibrium point and studies the effect of external forces
on system stability. The manipulator used in this study is a three-link planar
arm modeled with resilient joints. [Rivin, Zeid, and Rastgu-Ghamsari, 1985)
model the compliances of a two-prismatic-joint planar arm by the lumped
parameter approach. Two translational and one torsional springs arc added
to each joint of the arm. By neglecting vibratory velocity terms, the sta-
ble eigenvalues of the system dynamic equations are analyzed to examine
the effect of nominal joint velocity on system stability. [Streit, Krousgrill,’
and Bajaj, 19806] lincarize compliant manipulator dynamics and analyze sys-
tem stability under repetitive operation from the eigenvalues of the linearized
system. They apply this technique to a two-link planar arm modeled with
lumped parameters. [Chiou and Shahinpoor, 1990] study the force control
effect on system stability. They model two-link planar arm flexibility by the
Bernoulli-Euler Theory. Hybrid force/position control is also adopted to form
a closed loop control action. By slow motion assumption, the nonlinear terms
are neglected, then the closed-loop system dynamics are linearized around an
equilibrium position. To investigate system stability, the eigenvalues of the
final linear dynamic equations are analyzed over various force feedback gains,
force sensor stiffness, and structural flexibility. Other than stability study,
[Singer and Seering, 1989] suggest using a counteractive oscillation to can-
cel existing structural vibration. They also suggest that for bang-bang type
control the rectangular input commands could be preshaped to remove sen-
sitive frequency contents. However, the authors limit their study to a simple

mass-spring-damper model.



1.3.7 Linecarized System Dynamics Control

Due to the nonlincar coupling between nominal and vibratory modes,
building a controller for compliant manipulators is a difficult and challenging
task. However, it is suggested that compliant manipulator control problem
could be simplified by linearizing compliant system dynamics. [Chalhoub and
Ulsoy, 1987] develop a controller for a spherical coordinate robot with two rev-
olute joints and one prismatic joint. The prismatic joint is flexible and both
principal lateral bendings are depicted by the first modes. The controller is
built on linearized system dynamics, and pole placement technique is applied
to locate the feedback gains. This algorithm is experimentally tested on a
one-link planar arin. One special feature of this work is that observation and
control spillover cffects are examined. [Oosting and Dickerson, 1988] study
the motion response of a two-link planar arm. Lumped parameters arc em-
ployed to model both link and joint compliances. The system dynamics are
linearized about the desired motion, and a control law for the linear system
is designed with feedback and feedforward components. [Henrichfreise, 1988]
studies the control of a manipulator modeled with three resilient joints and
two compliant links. The system dynamics are lincarized around an operating
point. The controller feedforward and feedback gains of the lincar systemn are
selected from a special eriterion reported in this work. [Nathan and Singh,
1989] divide the control of robotic arm with compliant links into two phases.
In the first phase, system vibratory motion is neglected, and nominal joints
are controlled by variable structure control law. The second phase starts
when robot reaches the vicinity of terminal point. The system dynamies ave
then linearized around the terminal point. A vibration stabilizing controller

is designed for the linear time-invariant system by pole placement technique.
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At this stage both nominal and vibratory controllers are executed, and it is
assumed that the vibratory controller is relatively small and does not affect

nominal motion control.

1.3.8 Adaptive Control

The adaptive control techniques applied on compliant manipulators
include self-tuning regulator, model reference, and gain scheduling methods.
In self-tuning approach, [Yang and Gibson, 1989] adaptively control a two-
link planar arm with a flexible beam as the second link. The authors assume
that system dynamics could be described by an autoregressive moving-average
(ARMA) model. Then, the coefficients of the ARMA model are estimated
on-line. The control algorithm of the ARMA model is one-step ahead opti-
mization. Similarly, [Yurkovich, Tzes, Lee, and Hillsley, 1990] define a two-
link planar arm modeled with link compliances by an ARMA model, and
both pole placement and one-step ahead optimization are cmployed to design
control inputs. [Yuh and Tissue, 1990] control a two-link planar arm with
joint compliances but rigid links. The continuous system dynamics are lin-
earized around a given trajectory and then converted into discrete time form
by Euler’s method. The system parameters are assumed unknown and esti-
mated on-line. The control inputs are defined by pole placement technique.
[Cetinkunt and Wu, 1990] use a Lattice filter to estimate the coefficients of an
autoregressive model which represents system dynamics of a one-link flexible
arm. Two controllers are proposed: fixed-pole PD controller and one-step
ahead optimization. Similar self-tuning control could be found in [Koivo and
Lee, 1989] and [Chen and Menq, 1990]. A common assumption used in self-

tuning regulator design is that the estimated system parameters vary slowly
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in comparison with state variables. Also, since in the ARMA model nonlinear
dynainic parameters are replaced by simple lumped coefficients, information
such as payload mass, center of mass location, and moment of inertia are dif-
ficult to extract from on-line estimate data. Regarding other adaptive control
applications, [Yuan, Book, and Siciliano, 1989] use model reference method
to control a one-link flexible arm to behave like a decoupled, stable, linear,
time-invariant system. In gain scheduling control, [Nelson and Mitra, 1986)
compute off-line the optimal feedback gains of a single-link arm at different
payload magnitudes. During on-line control, the uncertain payload is esti-
mated by the gradient method, then the optimal feedback gains are adjusted
accordingly with the estimated payload value. In this work, link compliance
is modeled by the lumped parameter method. Similar work could be found
in [Menq and Chen, 1988] and [Yurkovich, Pacheco, and Tzes, 1989]. Both
works focus on control of single-link arms modeled as distributed systems.
However, the former uses a gradient method to perform on-line payload esti-
mation, while the latter identifies the payload by an accelerometer attached
at the tip of the link. A detailed survey of adaptive control of rigid robotic
manipulator is reported by [Tosunoglu and Tesar, 1988).

1.4 Other Approaches

Besides the efforts reported above in modeling and control arcas,
progress is also reported on strengthening a lightweight manipulator by struc-
tural design. For example, [Rivin, et al., 1987] use combinational links to
increase structural rigidity and reduce inertial weight. In their design, a link
is composed of two segments made of steel and aluminum separately. As sug-

gested by the authors, the optimal design shows a reduction in link deflection
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and driving torque. Instead of using traditional metal material, [Liao, Sung,
and Thompson, 1987) design manipulator links by using composite materials.
Link stiffness and damping are optimized by selecting proper design parame-
ters for the fiber material, the type of matrix, fiber orientation in each ply of
laminate, the fiber volume fraction, and the stacking sequence of the plies. A
comparison between aluminum and composite laminate arm is conducted by
[Choi, Thompson, and Gandhi, 1990}. The authors compare the performance
of both arms through the motion control of single-link arms. According to the
experimental results, the composite arm shows less settling time and smaller

overshoot and consumes less torque.

Despite the extensive effort reported above to solve compliant ma-
nipulator problem, most of the approaches are still in carly devclopment
stages and a great portion of them are limited to simple robotic structures
such as one-link arms. For example, development of a simple, general robot
controller suitable for both distributed and lumped parameter models have
not been pursued. Additionally, the impact of robot gcometry on vibratory
mode control has seldom been investigated. Also, the majority of adaptive
control of compliant manipulators focuses on one- and two-link planar arms.
A more meaningful problem, adaptive control of spatial compliant manipu-
lators, needs to be fully explored. In this report, we will develop controllers
applicable to both lumped and distributed models. The effects of kinematics
on vibratory mode control will be analyzed for a general compliant manipu-
Jator. Finally, an adaptive control law capable of on-line payload estimation
and motion control will be designed. Case studies will be used to examine and

illustrate our design and analysis throughout this report.



Chapter 2

Dynamic Equations of Rigid Robotic Manipulators

Robotic system dynamic equations will be derived in this chapter.
In the following derivations, structural compliance is neglected to facilitate
the introduction of several handy tools that are essential to this report. The
first section will present coordinate transformation matrix that transforms
between local and global coordinate frames. Then two properties, the first
and sccond order influence coefficients, are defined in the second and third
scctions. These two properties have compact and transparent nature that
makes system dynamics easy to derive and verify. Finally, robotic system
dynamics are derived by using the Lagrange method and further verified by

the Newton-Euler method.

2.1 Coordinate Transformation Matrices

One of the frequently used tools in robotic rescarch is coordinate
transformation. Generally, a local frame is assigned to each link of a given
robot. This local frame is useful in defining physical properties such as the
junction point to the next link, the center of mass location, moment of inertia,
and so forth. But to find the gross motion of a robot and the required driving
force or torque, those physical quantities eventually need to be expressed in
a common frame. Coordinate transformation matrix is a tool developed for

this purpose. Figure 2.1 shows a floating link and its local coordinate frame

20
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{%,9,%}, where &, g, and Z are three unit R3 vectors defined in the global
system {X,Y, Z}. A point p on the link is expressed by three local coordinates

T

where the superseript [ indicates that the vector is defined in the local frame.

The same vector in the global frame is defined by

ro= 44,2
Ty
= 94|
L
T (2.1)

In the abovc expression, T; € R3*3 is the transformation matrix converting
local coordinates to global values. Since the column vectors of T; are unit

and orthogonal, T} is a orthogonal matrix, that is

T 2Ty 1Tz
', = 9T gT§ ¢T3
Ty 3Ty 272

=1 (2.2)

where T is a 3 x 3 identity matrix, therefore T = T '. Apparently, to
construct a coordinate transformation matrix, the unit vectors of a given
local frame need to be identified first. Three basic rotational matrices are
often used in defining the local unit vectors. They are derived as follows. In
Figure 2.2, $., $,, and S, represent three orthogonal unit vectors, where S,
and S, rotate an angle § about S, to the new orientations 8! and S:. By
simple inner product operation, the new frame {51, S5, §1} could be expressed

in terms of the original frame {51, 5, S5} as

S = cos 85 + sin 85,
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Orthogonal Frames
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S, = —sin 8S, + cos 83,

8 = 5 (2.3)
Let S5 represent one of {X,Y,Z}, and §; and §, represent the other two by
following the right-hand rule relationship that §; x §; = 53, then the three
rotational matrices, Rot(Ss,8), converting {31, 85,84} back to {31, 53, 55}
are
1 0 0 cosf@ 0 sinf
Rot(X,0) = [0 cosf —sinb } : Rot(Y,8) = 0 1 0

0 sinf cosé —sinf® 0 cosf

cosf —sind 0
Rot(Z,8) = | sinf cosé 0 (2.4)
0 0 1

where the unit vector definitions X = {100]7, Y =[010], and Z =[00 17
are used in the above derivations. In the above equation, Rot(S3,8) denotes
that the new frame comes from a rotation of 8 angles about an old frame axis
$, where 3 € {X,Y, Z}. Notice that in each rotational matrix, the column
vectors are exactly the unit vectors of the new frame defined in the last
frame, so they are transformation matrix. The application of these rotational
matrices is illustrated in the following example. The original frame {X,Y, Z}
rotates an angle o about X to a new frame {X',Y', Z'}. Then the new frame
rotates an angle 8 about 2’ to the third frame {X",Y" Z"}. To find a matrix
T transforming the third frame back to the original frame, the rotational

matrices are multiplied together as
T = Rot(X, a)Rot(Z',6) (2.5)

Notice that the order of matrix multiplication must be obeyed in computing
T. Another example is to find the transformation matrices of the three-link

arm shown in Figure 2.3. In this model, each link is labeled with a local
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frame {X;,Y;, Z;}, ¢ € {1,2,3}, where the first joint is revolute and rotating
about Z;, the second joint is prismatic and sliding along Z,, and the third
joint has Z3 as pivot axis. Let {X,,Y,,Z,} denote the global frame, and T,
be the transformation matrix converting the ith frame to the global frame.

Then

T1 ROt(ZmHI)

T, = TiRot(17,90)

Ty = TRot(X,,90)Rot(Zy,6,) (2.6)
Let {&,4,,2;} denote the unit R® vectors of (XY, Z:}, i € {1,2,3}, then
the above transformation matrices give the unit vectors in terms of global

coordinates by the relationship

T, = [#; 9, 2] (

o
-1

2.2 The First Order Influence Coceflicients

In this section, two compact notations will be introduced to define
the translational and angular velocities of a moving robot. In Fignre 2.3, let
P € R? be the global positional vector of a given point p within the payload,
and also let @ € R* he the Buler angles of the pavload. Then the velocitios

of point p are

. or or op. | &
Po= (s o ]| 6
06, 06, 064 .
g,
“4G,0 (2.8)
and
od 0P 0 .

* = 54 25, 28"

kG0 (2.9)
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Figure 2.3: 3-Link Rigid Robot Modeled with Local Coordinate
Frames
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where 8 = [0, 8, 6;]7 ¢ R?, and 1G, € R3%3 15 defined as the first order
translational influence coefficient, or translational G function, of p. Similarly,

nG, € R3*3 is the first order rotational influence coefficient, or rotational G

function, of p. The details of 7G, are given next. According to Figure 2.3,

. d . : 1
P = m(1133l+9222+11$3/3)

= llfrn -+ 9232 4 925’2 + 1:11.7;;
= (650 X 1) 4 0220 + 0,620 X 32) + Ly(612) X Gy + 6335 x i1,)

= [(51 x P) 5 (85 x Iy, )}

= 1G,8 (2.10)

A comparison between Equations 2.8 and 2.10 produces

or _ . Lor _ . or
06, ! ' 08, ' 06,

:£3X 13};3 (211)
Apparently, the influence of a unit 6, on P is the cross product of the joint
1 pivot axis and the moment arm between joint 1 and p. Similarly, joint 3
is revolute, so every unit 8, adds a 4 x lsijy veetor to P, Since joint 2 ix
prismatic, the contribution of unit 6, to P is siuply 2;. Such results could

be explained by the definition of partial differentiation. Recalling that

or ar
001 - (891 ) l[)g:cmxstunt.ﬂg =constant

which means that the above partial operation is taken at fixed 8, and 6.
In Figure 2.2, the effect of unit variation of 6; on P with fixed 6, and 85 is
exactly z; x P. Similar explanations could be given to the partial operations
on §; and 6;. Following the interpretations and also example results, a general

translational inHuence coefficient table is constructed below,



Table 2.1 Translational G Functions: rG;
ith Joint Type | ( 7G;); Conditions
Revolute (R) | S; x i 1 <j

R 0 j<i
Prismatic (P) S 1<

P 0 j<t
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In the above table, 7G; denotes the translational G function of any point on
the jth link and ( 7G;); is its ith column vector. Also §; is the unit vector
of the tth joint éxis, and r;; is the positional vector from the ith joint to
the particular point on the jth link. For an n-link robot, 7G; € R3*", and
i,j € {1,2,--,n}. Equation 2.11 results could be verified directly from Table
9.1. A similar table can be built for rotational G function, but the details of

Equation 2.9 are worked out first.
$ = [ 02,0
= pG,8 (2.12)

The above results could be checked easily. Since each revolute joint con-
tributes to ® an angular velocity around the joint axis, 2, and Z3 constitute
separately the first and third column of nG,. However, joint 2 is prismatic
which does not change the orientation of robot, so the sccond column of pG,

is a null vector. The content of a general rotational G function is tabulated

below.
Table 2.2 Rotational G Functions: grG|
ith Joint Type | ( rG,); | Conditions
R 0 j <t
P 0 1<
P 0 j<t

where i,j € {1,2,-,n} for an n-link robot. Obviously, only revolute joint

contributes angular motion to a given robot. However, a revolute joint affects
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only the part of robot located at the downstream of the particular joint. This
means that if the zth joint is revolute then it only affects the orientation of the
jth link with every j 2> ¢, otherwise ( pG,); = 0 for all i > j. This siinple but
important fact will be applied to the derivation of the second order influence

coeflicients introduced in the next section.

2.3 The Second Order Influence Coeflicients

In the last section, G functions are introduced from velocity deriva-
tion. In this section, the second order influence coeficients, or H functions,
will be defined from acceleration equations, First, the translational velocity
of the three-link example, Equation 2.8, is differentiated with respect to time

which produces the translational acceleration

d or d,0P d,0P

P = 4G+ +Gh= 4G,
et @4 5 a'se) ' za 7. )10
82]) d’),) (;21,1
305801 3%2(3’01 3032()&

= 9G04 [0, 6,6 20,07, 00T, ,3002

801 a0y 00,003 r')dgd(h

G467 rH 6 (2.13)

where 7H, is a 3x3x3 matrix and is defined as the second order translational
influence coefficient, or simply translational H function. For an n-link robot,
rH, € R¥""; furthermore, let ( 7H, )i be the kth row and ith column

element of 7H,, then

a*pP

3
56,06, €

(rH i =

which means that tH, is a Hessian matrix. The entries of 7H, in Equa-

tion 2.13 are developed in the following equations. The first column of 7H,
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is obtained by the relation

d oprP d . ,
32(371) = -JE(HXI)

= 51XP+21XI')

= 5’1 X [élfl X P + 9.222 + 93(23 X la?}:;)]

L 21 X (21 X P)
= [91 92 03] 51 X ’22
31 X (53 X 13‘93)

(2.14)

where 3; = 0 and the second vector in the above equation is the first column

of rH,. Similatly,

d,oP, .
3;(59—2) = I
= élélxéz
51)(2?2
= éT[ 0 } (2.15)
0

and

d OP d . .
3?(_673) = ;ﬁ(zsxlays)

= 4 % baijs + 23 X lagy
= 6,(3, x 53) X lafis + 53 x l3(6121 X P + 0323 X §3)
= O, [(51 X 33) X §i3 + 23 X (31 X §i3)]
4 851323 x (33 X §3) (2.16)
The last equation could be further simplificd by using the vector triple prod-
uct identity that a x (bx ¢) = (a-¢)b—(a-b)c for any R3 vectors a, b, ¢ defined

in an orthogonal frame. Therefore, from Equation 2.10,
(31 X 33) X §3 + 23 X (21 X ¥3)
= —(§-53)31 + (T3 21)23 + (Za- )31 — (33 21)¥s
= 21 X (23 X Q3) (217)
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and hence 1 x (20 x 1)
zy X (23 X {3y,
%(%f—a =" 0o (2.18)
23 % (23 x l373)
By combining the above results, rH, is given by
- _8%p 82p 82P
WE AT 0

rH p = 36,00, 80308, B6300;
8P 8P 5P

L 56,863 086,083 503803

21 X (21 X P) 21 X ?:'2 21 X (23 X 133}3)

= 51 % 0 0 (2.19)
| 5’1 X (23 X 13373) 0 23 X (23 X 13’93)

Actually, following the kinematic relation of a given robot, the entries of a

general translational H function could be constructed directly from the next

table,
Table 2.3 Translational H Functions: 7H;

kth ith

Joint Type | Joint Type | ( rG,); (rH )i Conditions
R R 5,’)(7‘,‘_7' SkX(S,‘XT,‘J') k__<_l§j
R R 5,‘X7',‘j g,’X(SkXTkJ') ZSkS]
R R Si X 1y 0 i< i<k
R R 0 0 J < allk
P R S" X Ty 0 k<1<
P R S,‘X?’,‘j S”,-xgk i<A‘Sj
P R S X 7y 0 i< j <k
P R 0 0 J <tallk
R P S,‘ Sk X 3,’ k<t <y
R P g" 0 k>7iandj >
R P 0 0 Jj <, allk
p P S, 0 P <, all k
P P 0 0 j < allk

In Table 2.3, 7H, represents the translational H function of a given point
in the jth link, $; and S, are respectively the ith and kth joint axes, 7;
is the position vector between joint t and the particular point on link j,

where t = ¢,k, and ( 7H;)i € R3 is the kth row and ¢th column element



of rH;. Foran n-link robot, k,: € {1,2,--

31

.,n}. In the third column of

Table 2.3, the 7G| listed in Table 2.1 are repeated for clarity. Obviously, the

values of ( 7H;)ki

k as well as the joint types of i and k. Notice that r

rely on the geometric location of

H;

link j and joints ¢ and

is symmetric, l.e.,

(7H ki = (vHj)ir, which could be observed from Equation 2.19.

From Equation 2.12, the angular acceleration of point p is

where

= RGpé +éT RHpé

8%¢ 9% a%¢
801)80, 895801 80;}8&
8‘¢e ‘e a‘e

rRH, = 50,00, 80330 56306,
8%% 8% 8P
L 50,003 0602808 36380,
[ 00 21 X 53
= 00 0
LO 0 0

(2.20)

(2.21)

Similar result could be obtained from the following rotational H function

table.
Table 2.4 Rotational H Function: pH;

kth ith

Joint Type | Joint Type | ( rG;)i | ( RH )k Conditions
R R S; S, x S k<i<j
R R S; 0 E>tand j 21
R R 0 0 j<i,allk
P R S; 0 i< j,allk
P R 0 0 j<i,allk
P P 0 0 all 4, j, k
R P 0 0 all 7,7,k

As mentioned before, a prismatic joint does not change robot orientation, so

( RH;)ki = 0 when the kth or ith joint is prismatic. Also, a revolute joint

only affects the motion of its downstream links, so ( RH ;)i

= 0 when the kth
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Joint is revolute and k > ¢. This simple relation makes RHJ- asymumetric as
shown in Equation 2.21, i.e., ( RH ki # ( rH ; )ik, although rH ; is a Hessian

matrix.

2.4 The Lagrange Dynamic Equations

The G and H functions defined in the last sections will be very
handy in formulating the robotic system dynamics that will be derived by
the Lagrange method in this section. For an n-link robot, let v; denote
the generalized actuator force at the ith joint, that is, when the ith joint
is prismatic then v; represents the joint actuating force, or, if the ith joint
1s revolute then v; is the joint driving torque. Also, let 6; be the ith joint
displacement, and 6 be an n-dimensional vector with 6; as the ith element.

Then the Lagrange dynamic equations are given by

d OKE. OKE OPE
(YT T )
&\ 26 )" 78t o =V (2:22)

where N'E and PE are system kinetic and potential energy separately. In
the following derivations, only inertial dynamics are considered, and actua-
tor forces are the major forces driving the system. The dynamic equation

derivations will be divided into kinetic and potential energy parts.

2.4.1 Lagrange Dynamics of Kinetic Energy Part

For a general serial robot, let P; be the center of mass location of
the jth link, and <i>j be the angular velocity of the same link. Both P; and
<i>_,~ are R® vectors measured with respect to a given global frame. Then the
kinetic energy has an expression of

) 1 N .. .. ..
KE = 3 3 Im;PTP; + ()7 I;&]] (2.23)

j=1
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where m; is the mass of the jth link, I; is the moment of inertia computed
with respect to the jth link center of mass and defined by the jth link local
frame, and the superscript j indicates that the physical quantity is defined by
the jth local frame. In Equation 2.23, N denotes the total number of links,
and payload could be treated as an additional fixed link attached to the robot
gripper. Let T} be the coordinate transformation matrix transforming the jth

local frame back to the global frame, then
&, = grG;8
= T;® (2.24)
and by the orthogonal matrix property that TjT = Tj‘l, (I)j is given by
&) =TT rG,6 (2.25)

In the above equations, the angular velocity is expressed in terms of rotational
G function. Similarly, PJ- = TGjé could be introduced into the K E definition

in Equation 2.23 which becomes

1N . . .
KE = 3 Zl(m,-oT rGT 1G;8 + 67 RG] T,LT] RG;9)

SR (2.26)
where
N
I* = 3 (m; 7GT 1G; + rRGIT;I T pG;) € R™" (2.27)
i=1

Notice that I* is function of 8 only, i.e., I* = I*(6), besides that since KE > 0,
I* is a positive definite matrix and I" = (I*)T. The kinetic energy part of

Equation 2.22, i.e.,
d 6KE, OKE

EZ( 09, ) 99,
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is further divided into a sum of mass and moment of inertia components, or

d OKE, OKE d 0KE, OKE,, d,60KE; ONE;

a6 )" o0 " & ag )T om Ta@l a6 ) a8
where
1 N
KE, = §Zm0T 7GT 1G,6 (2.28)
j=1
- 1 Al T T )
KE; = 520 rRGTT;;TT RG,6 (2.29)

—

J=
-Derivation of $(%KE,)- &£ KE,

Let ( 7G,); denote the ith column vector of rG; and ( 7G;); € R?,
then a substitution of the NE,, expression defined by Equation 2.29 into

( -NE, ) produces

N .
aI‘E = S my( £G)T 1G,b (2.30)

i=1

then the time derivative of the above equation results in

d OKE, " gp,
o5 ) T Zn’<239kaaa) 1G4 3 my( 16 4G

=1 j=1

Lm (6" 7H, 6) (2.31)

where the second order partial (%;&Pj) is the second order property of P,
which is exactly the kth row and sth column entry of rH; given in Table 2.3.

Similar second order elements will show up in (%I\’E,n) which is
1

OKE, XN T :
- =Z (Zaea] ek) rG,6 (2.32)

Since translational H function is symimetric, then

o*P;,  o°P

06,08, — 06,06;
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therefore, the sccond order terms in Equations 2.31 and 2.32 are canceled in

the final dynamic expression of KE,, which is given below

d OKE, . OKE. & ) . .

j=1

.Derivation of jt KE,) - ‘_KEI

Set ( rG,); be the ith column vector of grG,and( rG)) € R3, then

from Equation 2.29,

a‘it aggE, Z( RGHTTLTT RG,6 + Z( RG)TT,LTT /G0
=1 =
+Z( RG )TTITT RG 9+E( RC )TTIT'I {G 9
]._1
+ Z( rG)TT;I;TT (67 rH ,6) (2.34)
j=1

It will be shown that the third term in the right-hand side of the above
cquation is actually zero. According to Equation 2.7, the transformation

matrix T} is composed of the local unit vectors
T; = [£;9; 2]

Since the unit vectors {;,;, 2;} change oricntation duc to the angular mo-

tion of link j, TJ is given by

Also by the G function definition,

then the (TJT rRG JG) part in the third term of Equation 2.34 could be expanded
into
(<I> X:L)T‘I) ((I> X &) &,
T pG,6 = 1] %; = { (@; x ;)79 } [ (&; x 4,) &, } (2.35)
($; x 2;)T®; (®; x 3;) - &;
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Following the vector product identities, (a x b)-c = (¢ x a)- b and li’i x &, =0,
Equation 2.35 results in a null vector, so the third term in Equation 2.34
vanishes. Further reduction of Equation 2.34 is possible after introducing the

following expansions. First (:2-IXE;) is expanded into two terms
g exp ET

OKE )
(;9" Z"T(ao RGT)TIT RG,6
+ EéT rGT (gg ) LTT rG,6 (2.36)
j=1

In the second term of the above equation, it can be concluded from robot
kinematic relation that

o1} _ { 0 ) ) 6; 1s prismatic or revolute but 7 > j
98; | [(Si x &) (Si x §;)(Si x 2;)] 6 revolute and ¢ < j

So the following analysis concentrates on the case where §; is revolute and
i <j. Since (LTT rG;8) € R3, let

8]
LT! pG;6 = € R

C3

then

JdT;

5 2 (LTT nG;0) = (Six &;)er + (Si x §1,)er + (Si x

€1
= S,'X [fIJ 3)] ;:J] Co
C3

= g,‘ X (TJIJTJT RGJ'(;) (237)

N)
v

therefore the second term of Equation 2.36 could be expressed as

N r (9T;

j-'l

;- 180 x (T,LTT RG,6)]

i[85 x (GLTT rG,6)) (2.38)

u‘Mz i M
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It is now shown that the above equation has a negative counterpart and is
neutralized in the final expression of

4 (xmi) _oxn

dt \ 06, ;
Subtracting the first term of Equation 2.36 from the first term of Equa-
tion 2.34 produces

Z( RC)TT,LTT G;6 — ZoT (—% RGT)TITT el

J-"l

E Z 02 Xn: ®; — 24, (T;,TT rG;6) (2.39)
= 69k60 06,08 7T ’ '
where each second order partial term represents an entry of rotational H

function listed in Table 2.4. By Tables 2.4, it can be shown for revolute 6;

that
02®;, [ &S xS ifj=i>k
06,060, 0 otherwise
2%, [ Six &S ifj2k>1
00,00, 0 otherwise
where

ke {1,2,---,7} (2.40)

6 = 1 if 6, is revolute
k 0 if 6 is prismatic

For j > 1, the second order terms in Equation 2.39 have the following compact

results
9%,
ankaa z:aea 550,
_ ore; 0*%;  0'%; e, 0%, 9% |\,
= \|56,06; 86,06; 96,96, 56,00, 06.08, 06,00,

= ([(6:8: x §:) (6282 % ) i (61821 x 50+ 0]
—[0 -+ 0+ (Si X GiaSinr) (Si Sia2Sipa) o+ (5i x 6;5)0 -+ 0])6
= [(515'1 x 5) (52-§2 x 8;) -+ (8 S x ;)0 - - 0}
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where according to Table 2.2 and Equation 2.40

In Equation 2.41, the fact that S; x $; = 0 has been used to complete the

formulation. Then Equation 2.39 becomes

(—gg X (I)J) . (T]IJT? RGJ-(;)

M=

.
1l
—

=8 [®; x (LT RG,0)] (2.43)

I
"MZ

<
i

which is exactly the counterpart of Equation 2.38, and both will cancel each
other in the final form. Notice that although the above derivations arc mainly
for revolute 6; and j > i, the cancellation is still valid for prismatic ; or
revolute 6; when j < ¥, because both terms are identically zero in these cases.
After eliminating all zero terms, the dynamic equation of K E; part reduces

to

d {ONE, OKE;
dt \ 9 a6
N - .
= Y (rG)](®; x (T;L,T] rG,8)]
1=1
N “ i f . .
+2_(rGHIUT LT rG,8 + 6" 111 6)] (2.44)
j=1
The final KE part dynamic equations are the sum of Equations 2.33 and 2.44

which are

i OKNE _61\'E‘
dt \ 96, 96,
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N . . .
= Zm,( TG),T( TGJ'G + OT THJ-O)

j=1

N
+ S°( rG)T[®; x (TiLT] rG,6)]

=1

+ f:( RG)T(TLTE) RG,6 + 67 RH 6)] (2.45)

i=1

2.4.2 Lagrange Dynamics of Potential Energy Part

It is assumed that gravity force is the only external force on the
system and the gravitational field is along the global Z direction. Then the
gravitational acceleration vector is defined by § = [00¢]T € R? where g is
the acccleration constant of gravity. The gravitational potential energy of the
jth link is given by

(PE); = m;P§

then
N
PE = ijPJ-TQ (2.46)
i=1
and
OPE N 6PT
o T ™
N
= Z my( 1G;)]§ (2.47)

With the above result and Equation 2.45, the dynamic cquation for the ith

actuator is

Uy

_ci OKFE _8KE+6PE
e; d6; 96;
N .. » .
= Y mi( 7G) (rG;6 + 6™ vH ;6)

j=1
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+ 331G X (GLTT 1G,6)

J=1

+ ﬁl:( RGH(TLTT)( RG,6 + 67 RH,0)]

j=1
N
+ 3 mi( 167§ (2.48)
j=1
Let v be an n-dimensional vector with v; as the ith element, and recalling
that ( 7G;); and ( rG,;); are the ith column of rG; and RG; respectively,
then for an n-link robot the total inertial dynamic equations are
o = d (OKE 31{E+6PE
Todt\ 98 a6 a9

. N I} . N . .
= I"0+ Y m; 7GT(6T 7H;6) + Y rGT(®; x (T;I;T rG,6))
=1 1=1

J=

N ) ] N
+ > rRGTUTLT YO rH6)| + 3 mi( rG;)"§ (2.49)
J=1 J=1

wliere I* is the generalized inertial matrix defined by Equation 2.27.

2.5 The Analogous Newton-Euler Dynamics

The dynamic equations derived by the Lagrange method will be
reconstructed by the analogous Newton-Euler approach in this section. The
Newton-Euler method will verify the Lagrange results and also provide the
dynamic equations with a physical interpretation. The linear momentum of

the jth link is ij, then the associated inertial force is

d .
Fy = 5(mF)
= m,-]l:.’j

= m;( 7G;8+ 6" rH;8) € R® (2.50)

where PJ is replaced by the G and H function expressions defined in Equa-

tion 2.13. To support this inertial force, the ith joint needs to generate a
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generalized actuator force (v;)r, whose magnitude is given in the following
three cases:

Case 1. If i > j, then the ith joint is located downstream of the jth link, so
the inertial force creates no effect on (v;)s,, therefore, (vi)r, = 0. However,

from Table 2.1, ( 7G;); =0 at ¢ > j, hence (vi)F, could be expressed as
(Ui)F,' = mj( qG]);I‘( TGJ-é + éT THjé)

Case 2. The ith joint is prismatic and i < j, then (vi)F, is a force given by

the projection of F; on the ith joint axis S;, or
(vi)l",‘ = g;TFJ
where ( 7G;)i = S; is listed in Table 2.1 under the condition that 1 < j.
Case 3. The ith joint is revolute and ¢ < j, then (v;)F; is a torque created
by
(vi)ry, = Si (rij x Fy)
= (S xr;)TF;
= my( 7G,)T( 1G;0 + 67 H,0) (2.51)
where r;; is the positional vector between the ith joint and the center of mass
of the jth link. The vector triple product identity a - (b x ¢) = (a xb) c

is applied in the above equation. For any of the three possible cases, (v)F,

could be expressed by the unique form in Equation 2.51.

Let hj: be the angular momentum of the jth link evaluated around

the center of mass, where hi € R? and is defined in the jth local frame, then
i = L
= LTT pG,6 (2.52)
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which could be converted into a global frame description h; by

hj = Tk}
= T;I;TT rG,;6 (2.53)

Set 7; be the inertial torque associated with h; and 7; € R?, then

d
T; = Ehj
d T A
= Z(TLIT G)
= TLT] rG,60 + T,IIT nG;6

+ ;LTI ( pG;6 + 67 rH ,0) (2.54)

According to Equation 2.35 results, TJT RG,-@ = 0, so its accompanied term

in Equation 2.54 vanishes. Also,
TjIjTJT RGjé = ‘i’j X (TJIJI’T RGjé) (2.55)
then Equation 2.54 becomes

T; = (.bj X (T,IJTJT RGjé)

Let (v),, be the generalized actuating force at the ith joint to support 7,,
then its value is decided in the following two cases:

Case 1. If the ith joint is prismatic or revolute but ¢ > j, then 7; has no
effect on (v;);,, so (v;);, = 0. Since by Table 2.2, ( rRG;)i = 0 in this case,

(vi)r, could be written as

(vi)fj = 07

( RGJ')!TTJ'

1l
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Case 2. The ith joint is revolute and i < j, then (v;),, is the projection of

7; on the ith joint axis S;, or

(v" )7'] = S‘IT Tj

= (G (2.57)

where the fact that ( rG;); = S; is used in the above equation. Since in both
cases, (v;),, has the same expression as in Equation 2.57, so the 7; given in

Equation 2.56 is substituted into Equation 2.57 to produce the final form

W)y, = (RGT(®; x (LT 2G;6))
+ ( RG)TUT LT rG ;6 + 67 rH 6)] (2.58)

Finally, for the gravity force, let (v;),, denote the ith joint force
supporting the gravity force of the jth link, then

Case 1. If j < ¢ and ¢ is either revolute or prismatic joint, then

(vi)g, = 0-m;g

e
~

= mi(1G;)/g

Case 2. If j > ¢ and the ith joint is prismatic, then

(vi)y, = mjs’irg

= my( 1G,){¢

Case 3. If j > 7 and the ith joint is revolute, then

~

(vi)g; = miST(rij x §)
= my(5i x ;)7

= my( 1G;)]§ (2.59)
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All three conditions result in the similar form as Equation 2.59. Let v; be
the sum of (vi)r,, (vi)r;, and (v;),, for all j € {1,2,3,---, N}, then from
Equations 2.51, 2.58, and 2.59,

N

v, = Z[(vi)F,' + (”i)fj + (”i)gj]

j=1

N
>_m;( 7G;){ (1G;6 + 6" 1 H 6)
j=1

( rG;)T1®; x (GLTT rG;8) + (T,LTT)( rG,6 + 67 pH ;6)]

m;i( 1G;){§ ‘ (2.60)

N

+ 2

i=1

N

+2

j=1

which is exactly the same result derived by the Lagrange equation in Equa-
tion 2.48. Notice that in both results, § and § are decoupled from position

dependent parameters in the dynamic equations. A physical interpretation

of Equation 2.60 is given here. In the first term of Equation 2.60,
m;( rG;6 + 67 +H,6)
represents the inertial force on the jth link, where
( TGjé + 67 THjé)

denotes link translational acceleration, and ( 7G,); is the projection vector

projecting the inertial force on the ith joint. Similarly, in the second term
&; x (GLT] rG;8) + (T;LTT ) G, + 67 rH,8)

is the inertial torque on the jth link due to angular acceleration of the link,

le.,

(TLTT) rG;6 + 67 RH ;)
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and also due to the change of moment of inertia magnitudes in the global

frame, which is

®; x (GLTT rG;6)

and ( pG;); is the projection vector projecting the inertial torque to the ith
joint. A similar interpretation could also be given to the gravity force term.
Although the geometric location order between the ith joint and the jth
link and the joint type will affect the final projected value, such problems are
solved automatically by the contents of projection vectors ( rG;)i and ( rG;)
as shown in the previous case discussions. Therefore, the above dynamic

equations are general for any i and j due to compactness of G and H functions.

2.6 Summary

In this chapter, rigid robot dynamic equations are derived by both
Lagrange and Newton-Euler methods. The purpose of presenting rigid system
dynamic equations is to help the reader to get acquainted with the notation
and tools used in this report. One of the most useful tools, the coordinate
transformation matrix, is introduced first to assist the identification of local
coordinate frame. Then, the first and second order influence cocfficients, G
and H functions, are defined. Simple kinematic relations are used in con-
structing and interpreting the entries of both functions. Finally G and H
functions are applied to system dynamics derivation. One advantage of intro-
ducing the G and H functions is the compactness of these notations. Besides
that the G and H functions carry the kinematic relations required to define
robot motion and actuator driving force. The physical interpretations of the
final dynamic equations are given in the last section. F inally, it should be

pointed out that the G functions also produce the “partial velocities” and
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“partial angular velocities” defined by [Kane and Levinson, 1985], which can
be proved directly by using the d’Alembert’s principle and the principle of

virtual work.



Chapter 3

Dynamic Equations of Compliant Robotic
Manipulators

In the previous chapter, we developed system dynamics for rigid
robotic manipulators. Physically, no system is absolutely rigid under load.
The assumption of rigid body is to simplify system modcl so that an effi-
cient dynamic description could be obtained with acceptable level of accu-
racy. One of such occasions that a rigid body model becomes a practical
approach is when the systemn has negligible deformation. For example, the
rigid body model is suitable to most current industrial robots which are built
with rugged arms but carry small payload and operate in low speed. How-
ever, the rigid body assumption is not realistic when structural deformation
becomes prominent and consequently affects operation precision. An obvious
case where rigid body assumption becomes impractical is in the modeling of
a lightweight robot. To increase productivity and cconomic value, the next
generation robots tend to be lighter, faster, and have better precision while
carrying larger payloads. Due to the lightweight nature, a heavy payload
plus high speed will cause structural deformation and vibration. To maintain
precision, it is essential to have a compliant model to help system and control
designers solve the structural deformation and residual oscillation problems.
The aim of this chapter is to present system dynamics of robotic manipulator

modeled with structural compliance.

47
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3.1 Distributed Parameter Model of Compliant Ma-
nipulators

There are two popular methods of describing manipulator compli-
ance. The first method is the distributed parameter model, and the second
method is the lumped parameter model. This section will introduce the dis-
tributed model and save the second method for a later section. Although the
distributed model is used mainly on link compliance, for the completeness
of the derivation, joint compliance is also included in the following analysis
where lumped massless spring is employed to represent joint compliance as
suggested by [Good, Sweet, and Strobel, 1984]. The distributed parameter
approach defines each robotic link as a continuous beam. Link deformation
is analyzed at every point along the link. Then an integration of all points
in the link gives the gross vibratory motion. A detailed derivation of compli-
ant manipulator dynamics by the distributed model is reported by [Graves,
1988]. This report will present a simplificd version of compliant manipulator
dynamics based on the following assumptions. It is assumed that (1) each
compliant link has a large slenderness ratio so that the Euler-Bernoulli theory
is applicable, (2) small deflections, and (3) deflections are decoupled in all di-
rections. According to the first assumption, the rotatory inertia and shearing
effects are negligible. And by the third assumption, coupling effects like the
centrifugal stiffening is neglected in the analysis. The link deflections mod-
eled in this section include lateral bendings in principal planes, longitudinal
elongation, and twisting along axial direction. Also, each joint compliance is
modeled by a lumped spring. The Lagrange method will be applied to de-
rive the compliant system dynamics. As a representative analysis, the kinetic
and potential energy are derived for the compliant link j shown in Figure

3.1. In this example, a given point p deflects from its rigid link position to



Figure 3.2: Side View of a Compliant Link
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a deformed position p’. {z;,y;,2;} is the fixed local frame before deforma-
tion, and {zf,y;, 2!} is another local frame attached to the distal end of the
deformed link. Both frames are parallel when the link is absolutely rigid.
Figure 3.2 shows the z; — z; plane view of Figure 3.1. According to the third
assumption, Figure 3.2 represents the link bending along z; direction. In the
same figure, N — N is the neutral surface, and p is a point on the neutral axis
located at a distance r from the fixed local frame. Let § denote the deflection
vector from p to p', and {%;,9;,%;} be fhe unit R? vectors of {z;,y;,z;}, all

unit vectors are defined in the global frame, then § is composed by
b(r,t) = 6,(r, )&, + 6,(r, 1), + 6,(r, t)3; € R® (3.1)

which indicates that ¢ is a function of position and time. In the above equa-
tion, {6,6,,6,} are the deflections of p along {%;,9;,%;}, where é, and 4,
represent the lateral bendings and 4, is longitudinal elongation. Now, let
a(r,t) be the twisting angle of the cross section at point p along ;. Then
the linear and angular velocities of point p’ are derived in the followings. Let
O; be the global position vector of the jth frame, and P and P’ be the global

position vector of p and p’ separately, then
P =0+r; +6eR® (3.2)
and
P' = O;+1&+ré;+6
= P+46 (3.3)

Note that if the jth joint is revolute then ¥ = 0, if the jth joint is prismatic
then © = éj + Bjo, where 6; is the actual joint displacement, and f;o is the

joint deflection. Let w; and <i>,- be the angular velocity of point p’ and p
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respectively. Since the rotatory effect 1s ignored, the angular velocity of p’
has the form

wj(r,t) = (i‘j + a(r, 1)Z; € R (3.4)

Notice that the joint compliance effect is included in <i)j, le, a ﬁjofj term is
contained in @ ; if the jth joint is revolute. For the incremental segment sur-
rounding p’ in Figure 3.2, let dm(r) be the mass of the segment and df (r) be
the associated mass moment of inertia with dI(r) € R¥*3, then the kinematic

energy of the segment 1s
2dKE; = PTP'dm(r) + WITH(dI(r)T] w; (3.5)

The above derivation is general for any given point p at 0 <r<L,soan
integration of all such segments over the whole link length L gives the kinetic

energy of compliant link j, which is

9KE; = / PTP'dm + / (WP Ty(dDTTw;)
= /PTPdm+/}5T5dnz +/5TPd171 +/5T5d171.
+ [ #IT(dDT] &+ / (od;TT;(dDTT &,
+ [SIT,(ADT] (&) + [T (6:25) (3.6)
where the part
[ PrPdm+ [ #1TADT] e,
is the rigid link kinetic energy. According to the first and third assumptions,

it is shown by [Low, 1987] that the gravitational and clastic potential energy

arc given by

1 Ja 1 da
R T~ = LAY AYP ™
PE, /p gdm + 2/EIy(———ar Vdr + 2]EI,(——ar i
1 06,q, 1 R G
ol et} bl SN O )
+2/EA(6r)dr+2/GJx( S + 5 Koo (37

r
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where E and G are separately the moduli of elasticity and rigidity, 4 is the
cross section arca, I, and I, are the arca moments of inertia about ; and Z;
respectively, J, is the polar moment of inertia along &;, IV, is the stiffuess of
modeled joint spring, and § € R3 is the gravitational acceleration vector. In

Equation 3.7, the rotational angles «, and «, are given by

26, 26,
A L

or

(3.8)

which represent the rotation angles around g, and #; respectively. The grav-

itational term in Equation 3.7 could be further divided into
/P'Tﬁ(lm = /PTﬁdm + /éngm

where the first term is the gravitational potential energy of rigid link. To
include rotatory inertia effect into the kinetic encrgy expression, Equation 3.4
is modified by

wj = &, + a8 + 4,0, + d.5 € R (3.9)

then the w; in Equations 3.5 and 3.6 are replaced by the above new defini-
tion. In order to simplify flexibility dynamics of a continuous system, a finite
munber of assumed modes are generally employed to discretize the deflections
which actually contain infinite degrees of freedom. Therefore, it is assuned
that the deflections could be expressed by decoupled forms

nx

61: = Zﬁ]u(t)‘f)]u(')
5y = Zﬁjgi(t)¢jyi(7')
=1

6, = Z/jjzi(t)ﬁﬁjzi(")

@ = 3 Buiblr) SNERTY



where {@;zi, Pivi, Pjzi, Pjoi} are the ith mode shapes of {6;,6,,6,,a.} and arc
functions of r, and {B;zi, Bjui, Bz, Biai} are the associated amplitudes which
are time functions. Then kinctic and potential encrgy expressions in Equa-
tions 3.6 and 3.7 could be integrated for all modes shape, and system dynam-
ics are defined by a set of generalized coordinates composed by nominal joint
parameters and modal amplitudes. Several often used mode shapes are sug-
gested by [Meirovitch, 1980} for the general continuous beam. For example,
polynomial mode shapes with orthogonal nature are used by [Graves, 1988}.
Of course, selection of mode shape needs to meet geometric boundary condi-
tions. Since a compliant link is generally modeled as a fixed-free or pinned-free
beam, sclected mode shapes must satisfy both boundary constraints. Usually
simple mode shapes are employed to facilitate integration. Once the mode
shapes are defined, the modal amplitudes could be reconstructed from on-line

measurements as reported by [Hastings and Book, 1986].

For an ng-link robot, the total system kinetic and potential energy

are

i
M=

o)
I

KE
j=1
N

PE = ) PE, (3.11)
=1

Here, payload is treated as a fixed link, and N is the total number of links

including payload. By collecting all statc variables into a vector ¢ and defining

that
g = [oT ﬂT]T
6 = [6, - 6,,)T (3.12)

ﬂ = [ﬂlO ,lel e ﬂlxnz‘ ,Blyl e ﬂlyny e 6121 e ﬂlznz ﬂlal e ﬂlana o ']T
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where @ is the vector of all nominal joint variables, and /2 is the collection of

all joint and link vibratory amplitudes. Then the Lagrange equation gives

| OKE 'E )
d OKE  OK ol _{z. G €0 (3.13)

dt" Oq; ) aq; + —(?qj— 10 q€ep
where ¢; is the ith clement of the vector ¢ defined in Equation 3.12, and
v is the generalized actuator force at the 7th joint. In the above dynamice
cquations, it is assumed that no external force is applied on the system.
Now, some remarks regarding the above derivation are given here. In Figure
3.1, the (5 4+ 1)th link is connected to the end of the deformed jth link, so
coordinate transformation of the (j 4 1)th frame should be with respect to the
distal end frame {7, g];, z;} instead of to the rigid link frame. Since change

At ~t ~f . . . . N
of {},9;, £%} oricntations are due to link twistings a,, a,,a, at r = L, so

T = (¥ = 1,0, 5

J J

wlere H"j(L) is a1 3 x 3 transformation matrix needed to be defined. To find
1W,(L), the rotational matrices of a,,a,,«, at r = L are derived first. For

small deformations, it can be shown that

[ 1 0 0 1 0 0
Rot(&,a,) = 0 cosay(L) —sima (L) { =~ |0 1 —a (L)
| 0 sinag(L) cos a (L) 0 a,(L) 1
1 0 0 0 0 0
= 01 0}+1]0 0 —a, (L)
001 0 a (L) O
T A, (3.15)
cosay(L) 0 sinay(L) 1 0 «,(L)
Rot(y,a,) = 0 1 0 = 0 1 0
—sina,(L) 0 cosay(L) —a (L) 0 1

¥ T44, (3.16)



(v ]
[W

cosa,(L) —sina,(L) 0 1 —a,(L) 0
Rot(Z,a;) = sina,(L) cos a,(L) 0 |= a,(L) 1 0
0 0 1 0 0 1

o T4A, (3.17)

where T is a 3 x 3 identity matrix. By neglecting the high order terms, a

multiplication of the above rotational matrices produces
(T+A)T+ANT+D8) =T+ D+ 0y A, (3.18)

Since the order of multiplication does not affect the above result, W; is given
by

1 —a,(L) a,(L)
Wi(L)=1+ A+ A+ A, = a,(L) 1 —az(L) (3.19)
—a, (L) a(L) 1

A substitution of the above W; into Equation 3.14 finishes the derivation of T}.
Notice that the orthogonality property of the transformation matrix holds for
T}, ie., (T; )t =TT, After establishing local frame for each compliant link,
the position vector of each local frame vertex could be generated recursively.
The procedure of finding the local frame position of a compliant link is similar
to that of rigid link except that the distal end-point deflections are added
to each rigid link length. The jth link origin O; in Equation 3.2 could be
computed by this procedure. Another comment is that the G and H function
definitions are also applicable to compliant system dynamics. For example,

in Figure 3.1, the velocities and accelerations of p' could be expressed by

. opP’ oP'
po= [=— = "
[841 0qz I
= 'I'Gp'(j
Pro= 1Gui+q" tTHpd
w; = RGplq.

wJ = RGp’ij + qT RHp’q (3'20)
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where link deflections and twistings and joint deformations are considered in
forming the G and H functions. With these compact notations, the kinetic

energy formulation in Equation 3.6 could be expressed by
OKE, = / PTP'dm + / {WI T(dD)TTw;)
= g (/ 1GT, 1, dm +/ RGITH(ADTY 7G,)d  (3.21)
and the total kinetic energy is
°2KE = ¢* f:( / 7GL 7Gdm + / RGLT{(dDTT rGp)d
j=1
df 4TI (3.22)
where I* is the generalized inertia matrix which is generally symmetric and
positive definite. Another important result of assumed mode method is that

resilient energy could be defined by constant stiffuess matrices. For example,

in Equation 3.7, the resilient encrgy of a, is given by
Jd
/EI (S )2y (3.23)

since the assumed mode expression of 4, in Equation 3.10 could be written

as

nz

b Zﬂm )¢52(1)
= ﬂ,-z(t)%z( (3.24)
with B4, and ¢;, defined by
Bu(t) = [Bialt) -+ Aruus(0) € R
$;:(r) = [$5aa(r) -+ Bjen(1)]" € R (3.25)

then the a, in Equation 3.8 has an inner product form of

oy = —81(222) (3.20)
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A substitution of the above a, into resilient enecrgy expression in Equa-

tion 3.23 produces

1 Jay.,, 1 o ¢Jz ia ¢’Jz T 4,18.
LB = o L[ BL(Ga 2 B
o Eﬂszjzﬂjz (3.27)
in which
K = [ B G Gy € oo (3.29)

is a constant stiffness matrix after integration. Similarly, the other resilient

energy in Equation 3.7 could be defined by

30{, 1 .
/EI( ro= §ﬂ,~T,,Ix,-yﬁ,-y
S )
[ EAGG = 3Kt
1 Oa, 1 ..
5 / Gl dr = 38hKiafia (3.29)

In the above equations, the vibratory amplitude vector and stiffness matrix
dimensions are defined accordingly by the number of used assumed modes.
With these constant stiffness matrices, it is possible to express the total po-

tential energy in Equation 3.11 by

N
PE =5 / PTgdr) + %ﬂTI\’ﬂ (3.30)
=1
where
K = diag[l\'m I\’lx I(]y I\’lz I\'la I\—QQ I\’2x o ] (3.31)

and vector A is defined in Equation 3.12. Let np denote the total number of
assumed modes, and ny be the number of nominal joints, then from Equa-
tion 3.12, the dimensions of vectors 8 and B are given which are 6 € R™ and

B € R". By the kinetic energy expression in Equation 3.22 and the potential



energy formulation in Equation 3.30, the system dynamics could be defined

by
d OKE, OKE 0OPE . fi 0
Zt—( 6(1')_ Oq + 9q Iq+[f2}+[ffﬁJ

= [ 0 ] (3.32)

where v € R" is the vector of generalized actuator forces, and f{ and f; are
the coupling force terms defined by

fi d, . 014, 8 .
[ f, ] =" - -55(-2-«’1 q) + %[Z;(/Pngr)] (3.33)

both fi and f, are nonlinear functions of 6, 8, 8, and f, and their dimensions
arc: f; € R" and f, € R*. For a simple system, a symbolic program like
MACSYMA is generally suggested to perform analytical integrations of the

above kinetic and potential energy expressions.

3.2 Lumped Parameter Model of Compliant Manipu-
lators

Theoretically link deflections are composed of infinite modes, but
resilient energy actually concentrates in few primary modes, ‘Alsn, due to the
danping effect and the demand of large energy to hend a link into high order
mode shapes, high frequency modes are seldom excited in regular operation.
Based on these facts, usually only primary modes are considered i the study
of continuous link vibration. Furthermore, as the rigidity of a compliant
link increases, the link deflection reduces and the number of dominant modes
decreases. Therefore for small deflection, a simple but efficient method of
studying link deformation is to focus on the largest contributor: the first

mode. This first mode approximation method is called the lumped parameter
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model. In the rigid body model, system inertia is modeled by a point mass.
The same approach is extended to the lumped parameter model except that
lumped springs are added to the compliant system to simulate structural
deformation. These springs are imaginary and occupy no physical space or
weight. They are defined by their locations, motion nature (translational or
torsional), and stiffuess values. In the lumped parameter model, each spring
represents one degree of freedom, and a generalized coordinate is assigned to
cach vibratory displacement. It should be noticed that to preserve physical
reality, the lumped spring stiffnesses are generally obtained experimentally

such as reported by [Behi, 1985] and [Sklar, 1988].

Figure 3.3 sketches the lumped spring model of a compliant link.
In that figure, the jth link is connected to its preceding link by a compliant
revolute joint which is modeled by a torsional spring with vibratory amplitude
Bjo. In case that the jth joint is prismatic then joint compliance is replaced
by o translational spring. The jth link is assumed rigid and the actual link
compliances are undertaken by three translational and three torsional springs
attached to the distal end of the link. The six springs are assumed decoupled.
The translational springs duplicate the end-point deflection of the link along
each local coordinate direction whose amplitudes are given by {Bi1, Bz, Bis}-
The torsional springs produce the distal-end twistings of the link in three
orthogonal directions which are defined by {Bja, Bjs,Bjs}. Therefore in the
lumped parameter model, oach link deformations could be defined by seven

vibratory coordinates which are

{/Bjoa ﬂjhﬂj?» ﬂj3a ﬂj‘h ﬂjSa ﬂjﬁ}

and plus the actual joint displacement there are eight degrees of freedom

to each compliant link. Hence, an ng-link compliant manipulator could be
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Figure 3.3: Lumped Parameter Model of a Compliant Link
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modcled by 8n, degrees of freedom in the lumped parameter model.

In the lumped parameter method, the modeled springs are assumed
decoupled, hence the pseudo-joint concept could be introduced to define the
vibratory motion. In the pseudo-joint technique, a modeled spring is treated
like an actuator of an imaginary joint, and the resultant deflection is dupli-
cated by the movement of that imaginary joint. For example, a translational
deflection is replaced by a pseudo prismatic joint, and a torsional deformation
is modeled by a pseudo revolute joint. These pseudo joints are driven by the
force or torque stored in the deformed springs. After replacing all springs
by pseudo joints, a compliant manipulator kinematically behaves like a rigid
manipulator, and the rigid model dynamics derived before could be extended

directly to the lumped parameter system.

As a demonstration, the lumped parameter model of the three-link
arm shown in Figure 2.3 is given below. Figure 3.4 shows a breakdown of the
three-link arm. Deformation of each link is approximated by the fundamental
mode in cach direction. For example, the first link motion is defined by the
nominal joint displacement 6y, joint deflection B;, three lincar deflections
{82, 3, B4} at the distal end, and three end-point twistings {85, 86, B7}. The
vibratory directions of the above amplitudes are indicated in the figure. Inn
this example case, there are cight degrees of freedom in each link, hence totally
twenty-four generalized coordinates are used to define the arm motion. In
order to describe the arm motion, the transformation matrices are computed

first to define the local coordinate frames of the three-link arm, which are

Ty = [E19, %)
cos(6, + B1) — sin(6) + f1) 0

= | sin(6, + B1) cos(61+p1) O
0 0 1
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Figure 3.4: Lumped Parameter Model of a Three-Link Arm
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T, = (%27, 2]

[ 1 =0: PBs cos90 0 sin90
=T| B 1 =B 0 1 0

| —Bs  Bs 1 —sin90 0 cos90
Ts = [#39; 23]
1 —Pu b 1 0 0
= T2 ﬂm 1 "ﬂl'l 0 cos90 —sin 90

| —Bis Bu 1 0 sin90 cos90

COS(03 + ,315) - Si11(63 + ﬂls) 0

sin(93 + ,315) COS(93 + ﬂls) 0 (334)

0 0 1

where small twisting angle assumption and Equation 3.19 results are applied
in the above equations. As an example, the linear and angular velocities
of the point p in Figure 3.4 arc derived in terms of the G functions. The

positional vector of p is given by
P=Py+Py+PpeR (3.35)

where Pj; is the positional vector from the origin of the first frame to that of
the second frame, similar definition is usced on Pp3, and Pj, is the positional
vector of p with respect to the third frame. All vectors are defined in the
fixed global frame {X,,Y,, Z,}. Dectails of the above positional vectors are

shown in the following equations:

P12
P‘23

Py,

L&, + Bad1 + Pafy + Bata
023, + Beia + Pola + B0l + Priza

I35 + Brots + Birlis + Pisis (3.36)

By the pseudo-joint technique, the arm is defined by the generalized coordi-

nates

q=1[61626506 P2 - Pu)" € RY
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Now, each link of the arm is assumed rigid and is connected by decoupled
actual and pseudo joints. This model allows us to define point p velocities by

using G functions, which are

= 1G,q (3.37)

where @ is angular velocity of p, and the 3 x 24 matrices, 7G, and grG,, are
the translational and rotational G functions respectively whose elements are

given as follows

dp Op dp
G == = " = 3.38
»= (56, 36, " 3 (3.38)
with
géizile %:22 810,1::23XP3P -gﬁ"—:élxl’
arb _ 4 ot _ 5 8P _ : TN
a5, N0 am — N agy 4 m—llx 23
OB G Py Pz x Py L= ab _ 5
;é;“ 1 23 ")p_, 1 23 ERN ~2 93 L2 3 39
AL — g Ar =2 P = ¢, x P oL — 4. x P, (3.39)
N N T R
@; =22 X PBP EF =23 X P3P 35316 =3 323 7 =Y
L) L __)’_:() R i— (b_()
s ~3 e RIEPY B
and
“Gp =[50 20008y, 2,00 003,79, 22 250002395 23] (3.40)

The above results are created by a direct application of the G function defi-

nitions listed in Tables 2.1 and 2.2. Similarly, accelerations of p are
P = 1Gi+q" 1H,q
= pG,i+q" rH,q (3.41)
where 7H,and zH, € R3*x24X24 516 the associated H functions. The above H

functions could be derived immediately from Tables 2.3 and 2.4. However, duc

to the prohibitively large dimension, they are not shown in this report. The



above results are applicable to any point in the arm, so the lumped parameter
model possesses the cfficient nature of rigid body model. Thercfore for an n,-
link compliant manipulator modeled by the lumped parameter technique, the

system kinetic energy is

; 11X, . o :
KE = 3 S (m;dT vGT 1G4 +¢" RG] T, LT rG;Q)
=1
of 1.7, .
= SdT6,8) (3.42)
where
N
I‘((),ﬂ) = Z(m,- TGJT TGJ' + “G}‘:Q‘IJ'TJT RGj) € R8n9x8ng (343)
i=1

is the generalized inertia matrix which still maintains the symmetric and pos-
itive definite character. In the above cquations, ¢ is a gencralized coordinate
vector composed by two parts: ¢ = [67, 87]7, where 8§ € R is the vector of
all nominal joint variables, and § € R" contains all pseudo joint displace-
ments with ng = Tny. Also, m; is mass of the jth link, I; is the associated
moment of incrtia, and N is the total number of links including payload.
Following the above notations, the system potential energy is

N v 1 g

PE = Z‘ m;Plg + 5(37 Kp (3.44)

i=
where KU is a diagonal stiffness matrix whose diagonal values correspond to
the modeled spring stiffnesses. The Lagrange equation is used directly to

formulate the system dynamics which are

d OKE, OKE 8PE={ v g €8 (3.45)

EE( d4; ) aq; + Jq; 0 €8
Then by using the approach introduced in Chapter 2 and the lumped parame-

ter model approximation, the dynamic equations of a compliant manipulator
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arc given by

i OKNE B OKE + oPE
dt \ 0q 0q dq

N N ,
= I'G+ > m; 1G(¢" rH ;) + 3" rGT[®; x (T;L;TE rG;9)]
=1

1=1

N N
: T . n 0
+5° rGI [(TJ'IJ'T,T)((f rH,@) + 3 m; TGl g+ [ ]

= = KB

def e fi 0

EE Iq+[f2]+[m]

- [S]ER""*”" (3.46)

where fI € R" and f; € R" contain the summation terms in the above
equations, and both are nonlinear functions of 8, 8, 3, and 8. In the above

cquation, v is an ng vector of generalized actuator forces.

3.3 Compliant Manipulator Dynamics Including Actu-
ator Parameters
In both distributed and lumped parameter models, the compliant

manipulator dynamics have the common symbolic form of

. fi 0 v -
LA e

where ¢ is the vector of generalized coordinates composed of nominal joint
displacements # and vibratory deflections 3, I* represents system generalized
inertia and is a function of 8§ and g, f{ and f, contain the nonlinear Coriolis,
centrifugal, and gravitational forces, IV B is the vector of spring forces, and v is
the vector of generalized actuator forces. To complete the system dynamics,
actuator dynamics is added to the above dynamic cquations in this section.

First, since § € R™, f € R and I" = I'T, I* could be divided into following
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submatrices

' T
I = [ 1;31 iz ] € Rno+na)x(notns) (3.48)

where A} € Rxme 5 € R"*", and A; € R"*", Then Equation 3.47

ERSIHE R R

where the first part, i.e.,

becomes

NI+STB+fl=v (3.50)

represents the dynamic balance between actuating forces and system re-

sponse, and the second part
S+ Af+fa+ KB=0 (3.51)

shows the interaction between nominal and oscillatory motions through spring
forces. It is assumed that the compliant manipulator is driven by DC servo

motors, and the actuator dynamics of the jth joint DC motor are
Lji; + Rji; + Ky;N;6; = ) (3.52)
N;J;6; + N;D;6; + N;S,8; + v;/N; = K, (3.53)

where i; is the armature current, L; is the circuit inductance, R; is the
circuit resistance, I,; is the actuator voltage gain, u} is the voltage input,
J; is the armature inertia, D, is the actuator damping, S; is the motor shaft
stiffness, I(y; is the actuator torque gain, v; is the external load, and N;
is the gear reduction ratio. The subscript j indicates the parameter of the
jth joint actuator. These actuator parameters except v; are constant values.
Generally, the inductance L; is negligible, so Equations 3.52 and 3.53 could

be combined into a second order form

210 I,

NJ I\ vj Iﬁ tj
R;

KiN; |,

N?J6; + (NJ?Dj + ) 6; + N2S;6; + v; = (3.54)
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Then for an ny-link manipulator, the actuator dynamics can be grouped into

Jé+ Dé + KO0 +v=FNKu (3.55)
wliere
= dingl(N2I) (N2T,) -+ (N2 )
P A 2 70 -
D = dingl(V?D, + 2l L ya p g Daeftieine
R ‘ Rn,
K, = diag[(lesl) (N2252) (N'I?GS’IG)]
. KuNy. KN Ko, N,
Ko = diag|(Zp=t) (S5 o (S (3.56)

and J, D, I, and I, arc ng x ng constant diagonal matrices. Also, u’ is
the vector of input voltages with u’ as the jth element. By substituting

Equation 3.50 into Equation 3.55, the combined dynamic equations become
(M +DNE+E"3+ fl+ Db+ K8 = Kad (3.57)

the above equations have actuator voltages as the control inputs. By defining
AM=AN+J; fi=fl+D+Kb; u=Ku' (3.58)

the final system dynamic equations are

Al ):T 9 fl i i -
| 1R PR i

In the later controller designs, control algorithm will be built based on the
above symbolic dynamic equations which are general for distributed and
lumped parameter models. The designed input « will be divided by I to

obtain the actual input voltage vector u'.
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3.4 Comparison Between Distributed and Lumped Pa-
rameter Models

In the previous sections, we have presented the model and dynamic
equations for compliant manipulators by both distributed and lumped pa-
rameter methods. By comparing the assumption and techniques used in both
approaches, each one possesses its unique characters that are not shared by
the other. Obviously, the advantage of distributed parameter model is its
precision. Since the distributed parameter model defines vibratory motion
based on the dynamic balance of cach differential scgment along a compli-
ant link. Fidelity is the strong point of this method. The disadvantage
of the distributed parameter model is computational incfficiency. Although
the resilient cnergy of a continuous link is contained primarily in few basic
modes, and finite number of assumed modes are often applied to simplify the
dimensions and integrations of a given distributed model, the final system
dimensions arc still beyond the real-time computation capacity of general
processors. Therefore, the distributed parameter model is used mainly in

off-line design study.

By contrast, the lumped parameter technique models link defiec-
tions by the first mode approximation and neglects high order mode effects,
so exactness is not the focus of this method. But due to its smaller dimension,
the lumped parameter method is a candidate for real-time control model. Of
course, selection of a compliant manipulator model still relies on the nature of
a given compliant manipulator and conditions of application. Several factors
affecting selection of model are listed as follows: (1) dimension of compliant
link, (2) material of compliant link, (3) robot operation speed, (4) payload

size and external force, and (5) operation precision requirement. The first
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two factors define link rigidity, the third and fourth factors determnine the
load supported by the link, and the last factor decides the degree of accu-
racy needed in a compliant link model. For example, according to [Ussher
and Doetsch, 1983] and [Taylor, 1985], Space Shuttle Remote Manipulator
System (RMS) has two tubular booms (links) of diameter 13.5 in and length
23 ft and 20.9 ft separately, and the booms are made from graphite-epoxy
composites. Due to the lightweight nature, the stiffness of RMS at its fully
extended position is 7.5 Ib/in, plus the maximum payload mass is 65,000 Ib,
apparently high order mode cffects are important in analyzing link deforma-
tion. However, RMS opcrates in a zero-g environment, so the inertial load is
caused mainly by the motion of the payload. Therefore, when RMS operates
in a low speed, the inertial load is very small in which case the first mode
dominates link deflection, then the lumped parameter model is considered an
efficient approach. Additionally, RMS is so light that its inertia is almost neg-
ligible in comparison with payload and Orbiter inertia. Hence, [Book, 1979]
and [Sellhorst, 1982] treat RMS as massless chain and model its compliances
Ly lumped springs. This example points out that selection of compliant ma-
nipulator model is basically oriented by a given task. The tradeoff between
accuracy and computation effort should be decided by user based on the fi-
nal purpose of application. Currently, the distributed paramecter model is
uscd in off-line design or on-line motion control of simple structures like one-
link arms, e.g., [Hasting and Book, 1986], and the lumped parameters model
is used in on-line control study of high degrec-of-freedom robotic manipula-
tors as reported by [Hernandez, 1989] and [Lin, Tosunoglu, and Tesar, 1990,
b].



Chapter 4

Dynamic Property Investigation of Compliant
Manipulators

In the last chapter, we derived compliant manipulator dynamic
equations by both distributed and lumped parameter models. Unlike rigid
body dynamics, compliant dynamics have additional ng equations describing
the vibratory system behavior. These additional equations carry some prop-
crties that are distinct from rigid body dynamics. Four major aspects of these
propertics are investigated here: reduction to rigid system dynamics, the sys-
tem natural frequency, accessibility of vibratory mode, and controllability of

vibratory mode.

4.1 Reduction to Rigid System Dynamics

The compliant manipulator system dynamics are derived in Equa-
tion 3.59 which are common for both distributed and lumped parameter mod-
els. This section will study the physical meaning of vibratory dynamics when
the structure becomes infinitely rigid. First the dynamic equations in Equa-

tion 3.59 are repeated here, which are

A1 ET 9 f[ _ U ng+ng
[2 Az][ﬁ]+[f2+1\'ﬂ]’[o]en+ (4.1)

where the upper part represents the dynamic equations of nominal joints,

and the lower part describes the vibratory mode dynamics. When manipula-

71



tor rigidity increases and structural deflection becomes negligible, the vibra-
tory amplitudes vanish from the dynamic expressions, and the upper part of
Equation 4.1 reduces to the rigid body dynamic expression. Consequently,
the vibratory dynamics which occupy the lower part of Equation 4.1 take
on a different physical meaning. Recalling that in deriving the rigid body
dynamies in the second chapter, we have used the Newton-Euler approach to
show that the dynamic equation at each joint is actually the projection of all
inertial loads on that particular joint, and that the actuator force is the coun-
teracting force to the projected inertial load. Following that relation, the final
system dynamic equations balance joint actuating forces to system inertial
load. However, in doing so, it is assumed that each link is of infinite strength
to support and transmit these forces, therefore, structural internal reaction
forces are neglected because they are cancelled out in the final dynamic ex-
pressions. In a rigid link system, the spring force I is exactly the internal
reaction force that is gencrally neglected in rigid body dynamics. This result
could be explained from pseudo-joint point of view. In a lumped parameter
model, each link has six decoupled pseudo joints located at the distal end:
three orthogonal prismatic joints and three orthogonal revolute joints. Then
the lower part of Equation 4.1 indicates that I is the force counteracting
inertial projection at each pseudo joint, or direction, hence when link rigidity
hecomes infinitely large, K3 becomes the internal reaction force or torque at
the distal end of a given link. Therefore, in the rigid link case g represents
internal structural forces, and the lower part of Equation 4.1 represents the
action and reaction balance at each pseudo joint location and direction. It
should be noted that although internal forces usually do not show up in the
final system dynamics of a rigid body model, it is important to analyze these

forces for structural strength design.
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4.2 Structural Natural Frequency

Another important information observed in the vibratory dynamic
equations is the structural system natural frequencies. For a stationary ma-
nipulator, the actual joints are motionless, that is, § = 6 = 0. Then a sudden
blow on the manipulator will cause structural oscillations. The oscillatory
dynamic equations are exactly the lower part of Equation 4.1 withd =6 =0,
that is,

A+ fa(§=0)+ KB =0 (4.2)

The above equation is a simple second order system with Az as the generalized
mass matrix, f; as nonlinear damping force vector, and K as the spring
matrix. For small oscillations, f; is negligible according to [Behi, 1985], then

Equation 4.2 is reduced to
f+A'KB=0 (4.3)
Let § = AB, then X is the eigenvaluc of
(M - A;'K)B=0 (4.4)

and B is the associated eigenvector. In the above equation, T is an ng X
ng identity matrix. For a compliant manipulator modeled by ng vibratory
modes, there are ng natural frequencies given by the square root of A. For
each natural frequency, the associated cigenvector gives information on the
relative magnitudes of modeled modal amplitudes. These natural frequencies
and eigenvectors could assist users to identify system inertial and stiffness
parameters. For example, [Behi, 1985] has experimentally measured Cincin-
nati Milacron T3-776 robot oscillatory frequencies and vibratory modes and

then used modal analysis methods to determine the inertial and stiffness
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values. Of course, since A; is position dependent, the eigenvalues and eigen-
vectors change with manipulator position. Therefore, a least-square curve
fitting approach may be used to average the experimentally obtained system

parameters.

Another usage of the vibratory dynamic equations is to decide the
(uasi-static deflection of a compliant manipulator. A stationary manipulator
is subjected to gravitational loads and hence deflection. Similarly, a work-
ing manipulator deforms under dynamic inertial loads. An approximation of
analyzing the structural deformation of a moving robot is by quasi-static ap-
proach. In quasi-static analysis, robot is assumed stationary at every instance
of motion, then the static deflection caused by the inertial and gravitational
londs are computed for that position. This means that by neglecting the B

and A terms in Equation 4.1, the quasi-static deflection is given by
B=-K"'(S0+f2) (4.5)

In the above equation, it 1s assumed that all 3 terms in ¥ and f; are negligible,
thercfore, & = £(8) and f, = fa(é, 8). Since the quasi-static deflection is con-
sidered to be the major contributor of structural deformation, it is suggested
by many rescarchers to compensate quasi-static deflection by cither off-line
trajectory planning or on-line control-in-the-small method as reported in the
first chapter. Detailed analysis of quasi-static deflection and global stiffness
matrix derivations are presented by [Fresonke, Hernandez, and Tesar, 1988],
and real-time computation of manipulator quasi-static deformation is studied

by [Hernandez, 1989].



4.3 Accessibility of Vibratory Modes

Another dynamic property to he examined is the effect of kinematics

on vibratory mode motion control. In the dynamic equations

[AZI Z][g]*[f,,f‘mF[H (4.6)

the generalized inertial matrix associated with acceleration term is positive
definite therefore invertible. Then the inverse of the inertial matrix is defined
as

Ay CTlaw [ A, T )T

C A || Z A

TA-152) 7! TA=Iy) ! 9T A-1
(A1 - T7AF'E) — (A1 - ETA; )" £TA;

—A7'S (A= TTAE) T AT 4 AT'E (A - STAFE) T BTA;!

(4.7)

where the second equation gives the inverse identity in terms of the subma-
trices of the original inertial matrix. In the above equations, the dimensions
of cach element are: A; € R™Xne, 3 g RueXne Ay € RroXns, f, € Rno,
fr € R, K € Rre*ms 6 € R, and f € R™. Also, A, € Rrexne,
C € R**m and A; € R"*"s, By these definitions, the dynamic equations

could be written in a form

é Al CT fl - Al
[é}+[0 Az][fz+1\'ﬁ]_[c}" (48)

in which the column vectors of matrix [AT CT]T constitute the control space
of u. Ultimately, these column vectors affect the control of w on [47, 377
values. Although the second nonlinear term in the left-hand side of the above
equation will alter acceleration response for a given input wu, the following
analysis focuses on the direct relation between input u and system accelera-

tion response, especially 4, by investigating the properties of the gain matrix
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[AT CT|T. Equation 4.8 could be rewritten as

J R o

Since A, is a diagonal submatrix of a positive definite matrix, it has full rank,
hence 8 resides in the column space of A;, and u can affect g directly. But C is
an off-diagonal submatrix whose rank is indecisive, so u might not be able to
affect some vibrational accelerations directly. One situation which we define
as inaccessibility problem is that C contains one or more null row vectors. In
that case, control u loses direct access to the corresponding vibratory mode,
therefore, that particular mode is dominated by the nonlinear term f; + K'j
in the above equation. Notice that fi has the same gain matrix as u, so
the inaccessible problem also occurs to fi. It will be shown later that this
accessibility problem generally does not imply a controllability problem, but
without the direct influence of control input w, active damping on structural
oscillation is impeded. Also, since f; and '8 arc nonlinear terms governing
the inaccessible mode, they must have a specific structure to dampen that
inaccessible vibration. Since f; is a nonlincar coupling term, constructing a
specific fz by u is neither transparent nor an casy task. Additionally, K/
represents structural resilient force, using this term to remove inaccessible
oscillation will create unwanted deformations, which apparently is not an cf-
fective strategy. So, inaccessibility Lecomes a control problem for compliant
manipulators. Another important feature of vibrational accessibility is its
kinematic dependence. Since the value of C varies with manipulator posture,
a vibrational mode could change from being accessible to inaccessible as ma-
nipulator changes its configuration. This kinematic dependency makes the
study of inaccessibility of vibrational modes an important and valuable work

in the control of compliant manipulators.
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4.3.1 The Algebraic Interpretation of Vibratory Mode Accessibil-
ity
To investigate the occurrence of one or more null row vectors in C,

the constituent elements of C are examined. From Equation 4.7, the inverse

identity of C is expressed by
C = -A'S(A-E7A7'E)”
[ —(A7'D)i, (A - Z7ATE)

_ _ -1
~(A7'D), (A,. — £TA;'%) (4.10)

| —(A7'D)ape (A1 - ETAFE) T
where (A7'L);, is the ith row vector of (A7'T) with ¢ € {1,---,n5} and
(A7'Z) € Rre. Notice that the second subscript r indicates a row vector,
later on, another subscript ¢ will be used to denote the column vector. Now,

for example, if the jth row of C is a null vector, then
(AT'E);r (A - ETAF'S) T =0

which means that the jth row of C is zero when (A7'E);, is orthogonal to the
matrix (Al - ETAQ'IE)_I. Since (Al - ETA;“[J)—l € R™*™ is an invertible
matrix whose column vectors are linearly independent and span R space,
(A7'Z)T. could be composed linearly by these column vectors. This implies
that the orthogonality relation exists if and only if the jth row of (A7'D),

ie., (A7'L);s, is a null vector. This could also be shown by postmultiplying

(Al —~XTA; 12) to both sides of Equation 4.10 which produces

—AF'S = C (A - TTA'E)
Cir (A — BTAF'T)
= : (4.11)
Cugr (A1 = ETAF'E)
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where C;, is the ith row of C, then if the jth row of C is zero, so does the
jth row of A;'S. This result reduces the accessibility examination to the

properties of (A;'E). Defining

D = (A;'E) e Rroxne

= [ch D2c e Dnec] (412)
where D;. is the ith column of D, then

Y = AD
= [(A2D1\o) (A:Dy) -+ (A2D,,.)]

DD T (4.13)

where ¥, is the ith column of £ and &, = A2 D;. which could be further
expressed as

ng
Bie = Y Dii(A2)e (4.14)
k=1

where (A;)g. is the kth column of Ay, and Dy, is the ktl, row and ith column
element of D. According to Equation 4.12, for the Jth vibratory mode to be
maccessible, the jth row of D must be a null vector, which makes Dj; zero
for all ¢, thercfore, )

Y= i Dii(Ay) ke (4.15)

b3y

for all ¢ € {1,---,np}. Which means that when all columus of & are linecarly
independent of the jth column of Ay, the jth vibratory mode is inaccessible.
This could be verified from another approach. By defining
(A77), 2

AT = (4.16)

(A7)ngr T
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where (A;1);, is the ith row of A3, so when the jth row of (A7'T) is & null
vector, the jth row of A7! must be orthogonal to X. But A7 is invertible, its
row vectors are not zero, therefore, it will be shown next that the orthogonal
relation occurs only when all columns of ¥ are linear independent of the jth
column of Az. Since A, is an invertible ng X ng matrix, its column vectors
arc linearly independent, and all vectors in R"# space could be composed by
A, column vectors. Therefore, following the notation used in Equation 4.14,
the ith column of £ could be expressed by a linear combination of A; column
vectors as
np

(B)ic = ?;1 Dyi(Az)e (4.17)
where D, is a scalar cocfficient. Also, since A7 'A; =7 where T is an ng x ng
identity matrix, which implies that (A;)};' (A2)ke = 6 With 6, =1 at =k
and zero if j # k, then for the jth vibrational mode in Equation 4.16 to be

inaccessible, the following relation exits for all ¢, i.e.,

(A71)jr(B)ic = k_lei(A;-l)jr(Aﬂ)kc
5
-0 (4.18)

Together with Equation 4.17, the above result shows that when every column
of ¥ is linearly independent of the jth column of As, the 7th row of C is a null
vector and the jth vibratory mode is inaccessible. Which supports the result
derived in Equation 4.15. Although the above analysis concentrates on one
inaccessible vibratory mode, similar conclusion could be extended directly
to the case of multi-inaccessible vibratory modes, which can be stated as:
when all columns of T are linearly independent of some particular columns of

A,, the corresponding vibratory mode accelerations are inaccessible to control

input u.
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4.3.2 The Physical Interpretation of Vibratory Mode Accessibility

The above analytic results answer accessibility problem from alge-
braic point of view. Additional physical interpretation can be obtained from,
the roles of ¥ and A, in the compliant system dynamic equations. According
to Equation 4.6, the dynamics associated with vibratory modes are expressed
by

O+ A+ fo+ KB=0 (4.19)

where T8 and A,J are the inertial forces applied on the modeled vibratory

coordinates and could be written in terms of column vectors as

2 = 3T)b,
=1
AB = S (Ad)ich (4.20)

i=1
where §; and B; are the ith element of the corresponding acccleration vectors.
Then the physical meanings of these column vectors could be interpreted
as follows. For a unit {.9"', the colummn vector (£);. represents the associated
inertial forces on all vibratory modes, and (Az)ic is a vector of similar iner-
tial forces contributed by a unit ﬂ, According to the inaccessibility analysis
and Equation 4.19, it could be concluded that when all § inertial forces on
all vibratory modes are linearly independent of a particular vibratory accel-
eration force on all vibratory modes then that specific vibratory acceleration
1s inaccessible to u. Interestingly, premultiplying Equation 4.19 by ASY, we

obtain

B=—A7'S6 - A7\ (f2 + KB) (4.21)

If § is considered as control input to the above equation, then any vibratory

acceleration inaccessible to u will also be inaccessible to 8 and vice versa.
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In order to have a better understanding on the above interpreta-
tion of vibratory mode inaccessibility, a simple lumped parameter example
is given for illustration purposes. The example, as shown in Figure 4.1 (a)
and (b), is a two-link arm modeled with two lumped vibratory modes. For
simplicity both links are assumed massless, only the payload has a mass m
and moment of inertia I with I = diag[l;, Iy, I;]. In this example, the first
link is considered rigid but the second link is compliant and modeled by two
vibratory modes, in which the first vibratory mode, denoted by 8, represents

end-point transverse deflection, and the second vibratory mode, denoted by

B,, depicts axial torsional deformation. As shown in Figure 4.1, these vi-~

bratory modes are orthogonal to each other, and the translational mode f,
is parallel to second joint axis, i.e., Z2, and the twisting mode f; is along
the X, direction. Let 6; be the first joint parameter and 6; be the second
joint displacement measured from horizontal position. Then the generalized

inertial matrix for this example is

(mi3 + I, - I.) cos?, + I 0 —mlycos @y I.sinb,
I = 0 mi3 + I, 0 0
- —mlycos b, 0 M 0
I, sin 6, 0 0 I,
(4.22)

In Figure 4.1(a), the second link is positioned at f; = 0 where

_ —mlg 0 . _ M 0
SR -

In the above equation, both columns of ¥ are linearly independent of the
second column of A,, therefore, according to the analytical interpretation, B,
(but not 1) is inaccessible. It will be shown that the inaccessibility is due to
geometric orthogonality. Since 6, rotates about Z; which is normal to both

B, and B, vibrations, the second joint input can not access both modes 1n



Figure 4.1:

(b)

Inaccessible Positions of Two-Link Arm
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any configuration. This result could be verified from Equation 4.22 dircctly
where the third and fourth row elements of the second column are always
zero. Hence, the accessibility analysis concentrates on the first joint effect.
When 6, = 0, 6, creates an inertial force on the payload along Z, which is
parallel to §; direction, then according to Equation 4.21, 8; will be accessible.
However, the torque on payload due to 6, is along the Y3 direction which is

normal to the B, oscillation, hence f; is inaccessible at this position.

In Figure 4.1(b), the second link moves to 6, = 90 deg, and

0 0 M 0
z:[Ix O],Az_[o Ir} (4.24)

which shows that both columns in T are independent of the first column of Az,
therefore, B (but not §;) becomes inaccessible in this position. Physically,
8, and B, spin about the same axis at this position. Hence, the first joint
can access the twisting mode. But 6; motion is normal to the f; lateral
deflection, hence both joint inputs can not access B.. Through the simple two-
link example, we introduce the physical meaning of inaccessibility problem
and also address its dependency on systemn kinematics. Notice that in this
example, the inertial force and torque on both pscudo joints are contributed
only by the payload, so the assumption of massless links does not oversimplify

the results.

The next example is to investigate the inaccessible positions of a dis-
tributed parameter model. Now, the second link of the two-link arm in Figure
4.2 is flexible and modeled as a continuous beam whose lateral deflection is

described by two assumed modes with polynomial mode shapes

¢ = (zr-;)? ; 62 = (7—1—2)2 - 1-2(

r

3
Lz)
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in which r is a distance variable along link 2 which has a length L,, and ¢,
and ¢, arerorthogona.l such that fol” $1¢2dr = 0. In this example, only the
lateral deflection along Z; is modeled, and it is assumed that rotatory inertial
effect is negligible. So, for a uniform beam with mass m, mass moment of
inertia Iy = diag[l,2 I3 I,5), and a point-mass payload M, the 2 x 2 % and
A, matrices are given by

~mLa 056, — ML cos 6 0}-1\ {’—5’&+M ~0.27M
y 12 =

—%mlL;cosb; + 0.2M Ly cosb, 0 | -02M Mmooy 0.02M

Y=

Apparently, at cos; = 0 both columns in ¥ are linearly independent of any
column of A,, hence both vibratory modes are inaccessible when 6, = 212-}17;
for any integer n. This result is consistent with that of the lumped two-link
example in Figure 4.1. Notice that the second column of the above ¥ is
always zero, which means that the sccoud joint actuator can not access the
lateral vibration all the time. Such a result is predicable from the geometric
orthogonality between the second joint and the lateral vibration. Geometric
orthogonality also causes inaccessibility of both assumed modes to the first
joint, that is, when thic second link is coaxial with the first joint, the moment
arm between the first joint and the lateral deflection vanishes, therefore, the
first joint contributes no motion to the lateral deflection and consequently

loscs access of the lateral deflection.

4.3.3 The Structure of ¥ and A,

Duc to geometric orthogonality, both inaccessibility analyses i the
above two-link examples have interesting kinematic interpretation. However,
in a general compliant manipulator where multi-link compliances are encoun-
tered, kinematic interpretation of the inaccessibility problem is not as trans-

parent as in the two-link case. The following analysis will reveal the actual
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Figure 4.2: A Two-Link Arm with the Second Link Modeled by a
Continuous Beam
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nature of £ and A, from which kinematic complexity of the inaccessibility
problem will be evidently clear. For a lumped parameter model, the inertial
matrix could be expressed by the first order influence coefficient representa-

tions as

Al ET N T T
£ A | Z{m,- G} G, + grG;I; RG;'} (4.25)

=1

where 7G; € R¥*(ne+n6) is the G function associated with translational mo-
tion of link ¢, and rG; € R3*{netns) i5 the G function associated with link i
rotational motion. Also, I; € R¥*3 is a generalized moment of inertia defined
as

I =T.I'TF (4.26)
in which T; € R®*? is a transformation matrix converting the local coordinatcs
defined in the ith frame to global coordinates, and I! € R3*3 is the moment
of inertia of link ¢ defined in the ith frame. The upper limit of summation, N,
1s the total number of links including payload. By dividing the G functions

into two submatrices as

’I'G,‘ = [( 'I‘G.')O( ’I'G‘)/i]
rRG: = [( rG)e ( RG:)g) (4.27)

where ( 7G,)g, ( RG;)e € R¥*"™ and ( 1G,)s, ( rRG;)s € R**"s, then Equa-
tion 4.25 could be expanded into

[ A, IT J _ EN:{nr (rG)I( 1G)e (1GIF( 7G))p }
L A = (rGF(2Gi)e (rGIF(1Gi)s

( RGITL( rG))e ( RGHTI( rG))
R e rv

by comparing term by term, the submatrices ¥ and A; have the following

+

equivalent forms

B =3 {m 2GOE(1Go + (aGIFL(nGa}  (4:20)

Chd
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N
A= {mi 2G5 7G)s + ( RGIFI rGi)s} (4.30)

Similarly, for distributed parameter model,

= 3 { [(1G 2y m + [ WG} (43D

N
A= Y { J(1G 5 1Gplpdm + J Gl WGplsh  (432)

i=1
Details of both lumped and distributed parameter dynaunics are given in
Chapter 3. Although the kinematic interpretations of the above G functions
are well-defined, they can not be extended to ¥ and Ay directly because
the kinematic rclations are coupled after the matrix multiplication. Besides
that the mass and moment of inertia of all links are mixed in the £ and Aq
expressions, that makes it difficult to obtain a simple geometric interprctation
of the inaccessibility problem. So, before the kinematic effects of vibratory
mode accessibility could be anderstood thoroughly, inaccessible modes can
ouly be identified from 7 and A, analytically. Since it 1s highly demanding
to check the dependency of cach column of £ and Ay, a practical approach is
to compute A7'E symbolically to examine the occurrence of row or rows of

zero vectors.

4.3.4 Case Studies of Inaccessible Vibratory Modes

To further examine robot position effects on vibratory mode acces-
sibility, a three-link manipulator is modeled increasingly with one, two, four,
and eight lumped vibratory modes. In each case, the inaccessible nominal
position is computed symbolically for each vibratory mode. The purpose of
using increasing number of vibratory modes is to check whether consistent in-

accessible positions would be obtained as thie modeled vibrations on & given
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Link 1 (Note: local coordinate frame is
shifted to the distal end of each linkK
to indicate vibratory mode directions)

0, T 1> J

Figure 4.3: A 3-Link Arm Modeled with 8 Lumped Compliances
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system are varied. Figure 4.3 is the three-link manipulator with all cight
lumped vibratory modes. Each vibratory mode depicts a link deflection in a
particular direction. Notice that each local frame is shifted to the distal end
of the link to assist description of vibratory mode directions. For example, £,
is the first link latcral deflection along the z; direction, 34 is the second link
lateral deformation along the y; direction, and fg is the third link twisting
along the x3 direction, and so forth. These local coordinates will be helpful in
presenting the investigation results. For example, when four modes, 81, £,
B3, and Bs are modeled, they will be denoted as x1y1Z222 for compact indi-
cation of which link and direction of vibrations are involved in the study. In
these eight vibratory modes, s (y2) and Bz (y3) are always accessible because
kinematically 6, can affect ﬁ4 directly, so does 65 to 7. Therefore, they are
excluded from the following report. The other six inaccessible mode results
are tabulated in Tables 4.1 (a) to (f), and in each table, the inaccessible mode,

the modeled vibratory modes, and the inaccessible position are listed.

Table 4.1 (a) 1 (x1) mode
modeled vibrational modes | inaccessible position (deg)
z 6; = 0 or 180 and 63 = 0 or 180
1% 9, = 0 or 180 and 63 = 0 or 180
T1Y1T222 8, = 0 or 180 and 63 = 0 or 180
T1Y1 2222323 6, = 0 or 180 and 63 = 0 or 180
T1Y1T2Y222T3Y323 9, = 0 or 180 and 65 = 0 or 180

Table 4.1 (b) §; (1) mode

modeled vibrational modes | inaccessible position (deg)

n 6, = 90 or 270 and 63 = 0 or 180
T1Y1 6, = 90 or 270 and 63 = 0 or 180
T1Y1%222 6, = 90 or 270
T1Y1T222Ta23 8, = 90 or 270

T1Y122Y222T3Y373 6; = 90 or 270




Table 4.1 (¢) £3 (z2) mode

modeled vibrational modes

inaccessible position (deg)

29 0; =0or 180 and 65 = 0 or 180
229 6, = 0 or 180 and

(3 = 0 or 180 or 63 = 90 or 270)
T1Y1T222 92 = 0 or 180 and

(63 = 0 or 180 or 63 = 90 or 270)

T1Y1T222T323

0; = 0 or 180 and
(83 = 0 or 180 or 63 = 90 or 270)

T1Y1X2Y22223Y323

f; = 0 or 180 and
(63 = 0 or 180 or #3 = 90 or 270)

Table 4.1 (d) G5 (2;2) mode

modeled vibrational modes

inaccessible position (deg)

22 0, = 90 or 270 and 63 = 0 or 180
2929 6, = 90 or 270 and 65 = 0 or 180
T1Y1T222 62 = 90 or 270
T1Y1T222X323 6, = 90 or 270

T1Y1T2Y2292T3Y323

8, = 90 or 270

Table 4.

1 (e) fAs (x3) mode

modeled vibrational modes

inaccessible position (deg)

T3 (62 = 90 or 270 and 63 = 90 or 270) or
(6; = 0 or 180 and 4 = 0 or 180)

R (82 = 90 or 270 and 83 = 90 or 270) or
(6, = 0 or 180 and 6 = 0 or 180)

1Y 1X2222323 0 =90 0or 270 or 5 = 0 or 180

L1Y1T2Y222T3Y323

f =90 or 270 or 83 = 0 or 180

Table 4.1 (f) G5 (23) mode

modeled vibrational modes

inaccessible position (deg)

<3

6, = 90 or 270 and 65 = 0 or 180

T3<3

6, = 90 or 270 and 83 = 0 or 180

T1Y1T2222323

8; = 90 or 270 or 83 = 90 or 270

T1Y1T2Y222X3Y323

0, = 90 or 270 or 65 = 90 or 270

90

For example, in Table 4.1 (b), when x,y; vibratory modes are modeled,

B2(y1) is inaccessible at 6, = 90 or 270 deg and 6; = 0 or 180 dcg, and

in the z,y,2,2,2323 case, the inaccessible position of 3,(y;) mode is at 6,

90 or 270 deg regardless 63 value. Notice that both results are consistent,
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because §; = 90 or 270 deg and 6; = 0 and 180 deg is a special case covered
by the general outcomne that fy(yy) is inaccessible when 6, = 90 or 270 deg.
Similar tendency could also be observed from the above tables that when
larger number of vibrational modes are modeled the results are much com-
plete and general. Details of A;'E symbolic results are listed in Table 4.2,
Since A, is an invertible matrix whose determinant is not zero and has no
effect on the final results, Table 4.2 is generated by the product of the adjoint
of A, and E Since the example is a three-link manipulator, each row vector
of A;'D contains three elements. In Table 4.2, the three row-vector elements
associated with each vibratory mode are denoted sequentially by [1], (2], and
[3] for the first, second, and third clements. The symbols used in Table 4.2
are described below. m; is the mass of link ¢ with ¢ = 1,2,3, and payload
with 1 = 4, also [; is the link length, #; is the center of mass location along link
i, and I; = diag[L, I, L] is the moment of incrtial. Interestingly, in the
results some particular row clenients are always zero despite the manipulator
configuration, which means that the corresponding actuator mputs can not
access that vibratory mode in any robot position. In the symbolic results, the
common sinusoidal terms are highlighted, and once they take on a value of
zero, that vibratory mode has a null row vector and becomes inaccessible. In
the case studies, we examine the inaccessible position of a lumped parameter
model. Now, one interesting question is that could lumped paramecter results
be extended directly to distributed parameter model? This means that if the
first mode is inaccessible then docs that imply inaccessibility of higher order
modes? Although such implications are observed from the two-link examples
in Figures 4.1 and 4.2, yet, due to complexity of & and A,, we could not answer
the question analytically. However, since the first mode dominates structural

deflection, its inaccessibility should be identified and avoided. Therefore, we
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emphasize the first mode instead of other higher order modes inaccessibility
in the three-link arm case studies. But it should be noticed that the algebraic
and physical interpretations of vibratory mode inaccessibility are built on a

symbolic form general for both lumped and distributed parameter models,

Notice that no joint compliance is modeled in the case studies be-
cause in modelimg a joint compliance the pseudo joint is added collinearly
with the physical joint, hence both nominal and vibratory inertial torques
projected on all vibratory coordinates are linearly dependent, therefore, joint
vibration is always accessible and hence excluded from the study. The in-
vestigaiion of inaccessible vibratory modes is important to off-line decision
making on manipulator architecture and working position. It constitutes a
criterion to help the user to choose a suitable manipulator for a given task.
And for existent manipulators, finding out the inaccessible position will avoid
manipulators from working in undesirable positions where structural vibra-
tions can not be dampened actively. As mentioned before, inaccessibility
problem is distinct from the controllability problem. Despite the fact that it
1s difficult to control an inaccessible vibratory mode, the controllability of an

inaccessible mode will be discussed in the next section.
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Table 4.2

x; of xq

(1]

0

(2]

(—l3my — ram3) cos(;)sin(8;) + (—lamy — rams)sin(8,) cos(6: )+
(—12m4 — 127713 — rgmg)sin(g,) ’

[3]

(—lamy — r3m3) cos(8,)sin(8,) + (—lamyg — rama)sin(8,) cos(63)

zy of Ty

[1]

0

(2]

(—lamy® 4 ((=ls — r3)ms — lyma)my — ramz? — ramama) cos(6;)sin(8,)+
(—lamy? 4 (=13 — r3)my — lama)my — rama® — r3myms)sin(8,) cos(63)
+(=lamy? + (=12 — ry)mg — 2lamz)my — lyma’+

(=13 — rg)mams — ramay?)sin(8,)

(3]

(—lamy® 4+ ((=ls — ra)mg — lymz)my — rama? — ramqmy) cos(8;)sin(8,)+
(—lamy® + (=l — r3)mg — lama)my — rama? — ramaomy)sin(8,) cos(6;)
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Table 4.2 (continued)
X1 of x1y1X222
i
0
(2]
((( l’; + 2131’; — 13113)17121713 + ( Iy4 Iy3 + I_,A -+ I33)131712)17'L4 +
((=rala® 4+ 2r3®ly — r3®Ymama? + (= Iu — Ls + g + Ly)ly—
r3lyy — valya + ralpy + r3la)memy)my+
(—uIy; —ralys + radpy + rals)momy? )cos(02)sm’(0
(((=15® + 2r4l3?% - 73213)7712777,3 +(—Lya— I+ L+ I13)137712)77142+
((—rals® + 2r3%l3 — 13 Hymams? + ((—1, vi = L3 + Loy + I35~

ralyy — ralys + r3ly + 731';3)"127713)7711 + (—radys — r3lys + 13l 0+
73[13)771217?.3 )sin(8,) cos(63) + (((=lals® + 2r3lyls — 1y lg)mgmg-{—
(=Iyaly — Laly + Lyly + Lgly)me)my?+
((—12132 + 27'31'213 - 1‘3212)771277132+
((—rols? + 2ryr3l5 — rara?)ma? 4 (=241, — 2050 + 21415 + 2150)my ) ma+
(—1‘2Iy4 = rolys 4+ roloy + rala)me?)my+
(=Tyals = Igly + Lyly + Laly)mama?+
(—7‘2Iy4 - 1‘2Iy3 + TQIr.; + 1‘2Ix3)771227713)sin(0,)sin2(03)+
((=1pa — Lig)lymamy® + (=L — I3y — 31y — ralg)momamy+
(-7 ,I 1= ralya)mgmg?) cos(6y)sin(6,)4-
(-1 L)lamgmy? + (( Ly — Lg)ly — valg — ralg)mymgmy+
(- 1;[ 1 — ralig)mams?)sin(8,) cos(6y) + ((—Laly — Laly)mgm,?
F((=2Lpaly = 2Laly)ymamy + (—ralpy — roLa)my)mg+
(—Lealy = Laly)momy?® + (=rydyq — r2La)ma?mg)sin(@,)

(3]
(((—13° + 2r3l3* — 1y yymgmg + (=4 — I+ L+ La)lsmy)my® +
((—)313 + 273215 — 133)17l2m32+
(-1 Ijs+ Iy + La)ly — TSIyI_73[3+731 4t
73113)77127713)77“ + (=ralyy — rals + r3lq + ral3)mams?) cos(f,)sin® (8,)
+(((=13° + 2r3l3? — 73213)7772m3 + (=14 — Iz + Ly + Ia)lama)m, 2+
((—=rala® + 2r3%l5 — r3®)mams? + ((— Iy — I+ Iy + I3)l3~
ralys — r3ly3 + r3lg + r3ls)mama)my+
(=r3lya — ralys + r3lg + ral3)mam;?)sin(, )cos(63)51|12(03)+
(=14 — zs)lamﬂm + ((—1ps — Iia)ls — r3lp4 — ralzz)mamamy+
(=ralq — r3la)mama?) cos(6;)sin(0,) + ((—Ipq — Ia)lsmamy?+
((—Tos — Ia)ly — r3lpg — r3la)mamamy+
(=ralzg — r3l3)mams?)sin(8,) cos(6;)



Table 4.2 (continued)

x1 of X1y1X222X323

[1]
0

2]

((—Izalysls — gLyl + I3Ipqla)mamamy?+

(—ralpalyy — ralpalys + ralpalia)mama?imy) cos(8;)sin®(8,)+
(((=Lealyals — Lalals + Ialpals)momamy®+

(—ralpalyy — 3Ll s + ralzalza)mamg®my)sin(8,) cos(63)+
((=Ipadyaly — Lyl aly + LaLqla)mamamy?+

(=Ipalyaly — Luadysly + Lalzalz)mama®+

(—radpalys — raloalys + rolal e )maimy)my)sin(8,))sin?(8,)+
(—Ial4lamamam,? — r3 L3l 4mama®my) cos(62)sin(8,)+

(=Ll glsmamamnyg? — r3lalymama?my)sin(8,) cos(8;3)+

(= LiaLalymams? — ryLalyma®ma)my — LiaLalamamamy?)sin(8,)
(3]

((—Tpadpals — Lalals + Ll gl3)momamy®+

(—1'3I,_-4Iy4 - 7'3I3,4Iy3 + 7‘3[,,3.[,4)771277?,32771.4) COS(92)5i113(93)+
((—Iadyals — Lyl als + Laldly)mamamy?+

(—r3lpalyq — ralpadys + raliales)mamaimy)sin(8,) cos(8a)sin?(0,)+
(—Ialpalamamamy? — vaLaLymams®ing) cos(8;)sin(0,)+

(=Ll alsmomamy?® — ral sl amama®my)sin(8,) cos(6s)

x1 of Ty 22y222T3Ya 23

(1]
0

2]

(—rolpalyy — volpg Ly + roloale)matmamy®sin(6,)sin®(8,)+
((=ralpqlyy — ralpyln + rala L )mama®mB+

(—1‘31,,|Iy,( — 7'311,4Iy3 + 7‘3[.,‘.3[_.,;.|)77127Tl3377l42) COS(92)3i113(03)+
((—=ralpalys — ralpalys + relpa o )maimadmy?—

rol 3l .4ma*mam ®)sin(8,)sin®(8,)+

(—ralpaloamamy®my® — ralalamams®mg?) cos(,)sin(8,)
—ro Ll ymy*maim,2sin(8,)

(3]

((—ralpalyy — ralp s + ralzalpa)mama®m,3+

(=ralpal,y — ralaal,s + ralal)mama®my?) cos(2)sin®(8,)
+(—ralalgmema*my® — ralzl4mams®my?) cos(;)sin(0,)

95
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Table 4.2 (continued)
y1of y1

(1]

(=lymy — r3my) sin(6;)sin(0,) + (lzmy + r3ma)cos(8,) cos(6;)

+(lamq + lgmg + rymy)cos(8,)

2]

0

(3]

0

y1 of xyy1

1]

(=lam? + (=13 — ra)ma — lama)my — rama? — ramama) sin(8; )sin(8, )+
(lsma® + ((I3 + r3)ma + lamg)my + rama? + ramamg)cos(8,) cos(f;)+
(lomy® + (2lymg + (I + ra)ma)my + lyma? + (I + rg)mama + ramy?)cos(6,)
(2]

0

[3]

0

v of Tyy1z22,

1]

(((rgl3% — 2ryryls + rora?)maoms + (rodys + rodys — roly — rola)me)my+
((rals® = 2rar3ly + rora?)myma? + ((rals® — 2rarals + 1973?)my 2+

(2rolyy + 2ralys — 2r 0y — 2ry 0 3)my)ma+

(rolys + rolyz — voly — rodz3)mat)my+

(rodys + rolys — roly — rol3)mama® + (redys + ralys — rolq — rala)ma?msg)
cos(0,)sin?(6;) + ((rol, + rolzz)mamy? + ((2ra I + 2ryL3)mama+
(rolos + ralpa)ma®ymyg + (v Ly + rod3)mams3+

(rolpq + r2dz3)ma*ms)cos(8,)

2]

0
[3]
0
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Table 4.2 (continued)

y1 of x3y1x222X323

(1]

((rodpalya + rolpalys — rolzal)mamamy?+

((redpalys + r2lzalyz — ralaloa)mams®+

(rolala 4 ralpsl s — ralsalz)ma®ma)my)cos(6,) sin?(83)+
(rolpalamamamy?® + (rolalamams? + rol 3 loamy®*ma)my)cos(6,)
2]

0

8]
0

n of T1Y1T2Y222T3Y323

(1]

(rolpalys + rolzadys — rolal)may?mamy’cos(8,) sin'(8;3)+
(((7‘2Ix‘in4 + rolpaln — 7'2113134)77127713277143%-

(rolpalys + ralpalys — ralsalea)mama®ma?)cos®(9,)+
("21:3[:4771227”377143 + (rolpalys + rolal s — r2lz3lq)
may?ma?my?)cos(8,)sin*(63)+

(rolzalamamaimy® + rolaamama®my?)cos®(0,)+

7‘2[,,3134mgzm32m42c08(0,)
(2]
0

(3]
0
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Table 4.2 (continued)

X2 of Xa

(1]

(3*my + ra®ma + L4 + I,3)sin(8,)sin*(0,)+

((—132m4 — r32m3 -— Iy4 - Iya + I,;4 + Ix3) COS(HQ) COS(03)+
(—lalsmy — r3lymg) cos(6;))sin(8,)+

(Ioa + I.3)sin(6,) cos?(6;)

2]

0

(3]
0

xq of 132,

(1]

(((la2 — ral3)m; + Ly+Ip—1I4— I3)mg+

(Tya + Lys ~ Iy — I3)ma)sin(8, )sin’(8, )+

(((rslz - 132)7713 — Ly~ I + Ly + Ia)my+

(=Lya = Is+ Ly + I.3)m3) cos(eg)cos(Oa)sin(Oa)-{—
(Lo + Ia)my + (Ig + I;3)m3)sin(8,)

[2]

0

[3]
0

x2 of Ty1T22,

) |

(3% = 2315 + rat)mamg + (L4 + I — Iy — I3)my)m,+

((132 - 21‘313 + 7*32)m2m;;2 + ((132 - 27‘313 + 7‘32)17122+

(2Iy4 + 213 — 214 — 21,3)my)m; + (L4 + Iy — La — Ly)ma?)my+

(Iys + I s — Iy — Lag)myms? + (Typa + Iy — Ly — ng)mg'zm:;)sin(o,)si112(93) -

(=132 + 2r3l3 — r3t)moms + (—Tya — Lg + Ly + La)mg)my? +

((—132 + 2r3ly — r3)mym,? + ((—132 + 2r3ly — r3?)img?+

(=2L,4 — 213 4 214 + 2L 3)my)ms + (—dyt = Iy + Ly + La)ma®)my+
(=L — Iz + Ly + Lg)mamy?+

(=Iys — Lz + Ly + La)ma®mg) cos(8;)cos(8,)sin( 8, )+

((Tza + La)mamy® + (214 + 203)mama + (g + La)my2)mg+

(Lpq + Lna)mama® + (L4 + I3)my*ng)sin(8,)

[2]

0

(3]
0



Table 4.2 (continued)
X2 of X1y1X222X3Z3

1]

((Tpalya + Ipalys — Lalpa)mamamy® + (Lpalys + Lpadys — Iialoq)mama®+

(Lpalys + Loalys — Lal . )ma*m3)my)sin(8,)sin®(8,)+
((—Tpalya — Ipalys + Ix3[z4)m2m3m4 +

((—Ipalys — Lylp + Iali)mama®+

(—Ipalyq — Iyl + IsIg)ma®ma)my) cos(8; )cos(8,)sin(8,)+
(Lalamamamy?® + (Lpalamama® + Ialyma®mg)my)sin(6,)

2]
0
3]
0

'[1'2] of z1y122y222T3Ya23

1

(Lialys + Ialys — IigLg)ma?mamy®sin(8,)sin*(0,)+

(=Ll — L Ln + Laly)mamame® cos(6,)cos(8,)sin®(8.,) +
((Tpadya + Tpalys — LiaLpg)moma*my®+

(Lealys + Ladys — Lalo)mams®my?) cos*(6;) + LaLama?mam,3+
(Lpadys + Loalyy — Lal . )ma*ma?m 2 )sin((),)sillz(ﬂs)+

(= Tpalya = Loalys + Ligloa)mamy® My S

(—Lpadya — Lalys + Lialp)mams?® nu )cos:’(()z)

(=Lpalys — Lyl + Lalq)ma®mg? My % cos(6,))cos(8,)sin(8,)+
((Ipa Lpamama®my® + gl gmama®my?) cos?(6;)+

L3l .4ymq®ma?m,?)sin(8,)

[2]
0
3]
0
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Table 4.2 (continued)

Z9 of Zy

(1]

(lsmyg + r3m3)sin(é, )sin(8,) + (—lamy — rams)cos(8,) cos(6;)+
(=lamy — lm;)cos(8,)

[2]

0

3]
0

23 of 2929

(1]

(rala®mamy + (ralyq + 13l ~ 130 — r3lz3)mg) si11(92)51113(03)+
(((=ralys — ralys + 13l + r3la)mg — 1‘31327713m4)cos(9,) cos(6;)+
((=lals®ma — Laly — Laly + Lly + Laly)my+

(—Lyaly — Ialy + Iyl + I,,;,lg)1713)cos(0,))si112(03)+

(r3lea + r3l3)masin(, )sin(8,)+

((=Iza — La)lamy + (=13l — r3lp3)my)cos(8,) cos(8s)+

((—Ipalz = Laly)my + (= Lal, — I3l )my)cos(,)

2]

0

0

z2 of 2 1y12227

(1]

((((r2 = L)l + r3(20y — 20)lg + 13%(ry — L))mama+

(La(lz — ) + La(l; —r2) + Ly(ry — 1) + Ls(ry — Lg))my)my 2+
(((ra = I)l3% + ra(2l, — 2r9)ls + r3%(rg — 1y))moma?+

(((r2 — L)l + ry(21, - 2ro)ls + 13%(ry — 1))+

(114(212 — 27‘2) + 113(212 - 27'2) + Iy4(27‘2 — 212)+

I;3(2r; — 203))ymg)ms + (Lpa(lz = r2) + La(l — r2)+

La(ra — L) + La(ra = 1))my?)ma+

(Lza(lz — r2) + La(lz — 12) + Lya(rg = 1) + La(ra — I))ymama?+
(Lpa(la — 72) + La(l; - rz) + Iy4(7‘2 =)+ Is(ry — 12))7”22"13)(105(9:) sin’(63)+
((=Lza — Lg)lamamy® + (= Ly — Ly)ly — ralyy — 3l g)moma+
(—Izq — La)lama?)my + (=13l — ralzs)mama®+

(=r3lzq — r3l3)my2my)cos(8,) cos(f3)+

((Lea(ra — L) + La(ra = 13))mamy?® + ((Lza(2r2 — 2I3) + La(2r; — 21))mama+
(Loa(ra — I2) + La(rz — 12))ma®)my + (Ly(rs - ) + La(r2 — 1))mam;?+
(Lpa(ra = 1) + La(ry — I2))ma*m3)cos(8,)

2]

0

(3]
0
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Table 4.2 (continued)

z3 of X1Y1X222X323

(1]

((TpaIza(l2 — r2) + Ipadya(rs — 12) + Ipalya(ra — 12))m2m3m42+

((Izalea(la — m2) + Lal(ra — L) + Iala(r2 — ))mama®+

(II3I34(12 —_ Tg) + II4Iy4(T2 - 12) + Iz4Iy3(1‘2 e 12))m27m3)m4)cos(0,) Si112(93)+
((—1'3I$3Ix4m2m32 — 3l gl ama?ma)my — ral I amamamy?)cos(8,) cos(f3)+
(Ix3I_,,:4(T‘2 — 12)7712771317’142 + (Ix3II4(7‘2 — 12)1712n132+

Il 4(ry — I)ma*ma)ma)cos(8,)

(2]

0

(3]

0

z3 of 21y172Y222T3Y3 23

i

(Ialpa(ly — 72) + Lalya(rz — )+

Lyl(rs — [2))1’7122771317143COS(02)Sill4(03)+
(—7‘3Ix3Iz4m22m3m43cos(0,)cos(93) -+ ((Ix312,|(12 - 1‘2) + Ix4Iy4('I‘2 — lg)-}-
Ix4Iy3(r2 - 12))m2m32m43 + (Ipalpa(lz — r2) + Lpalya(rs — L)+
quIy:;(Tg - lg))n12m331n42)c053(0,)+

(Ipala(rs — 12)77122771317143 + (IpaLa(ly — 72) + Lalu(ra — L)+
IaIa(ry — 12))yma*ma®m,?)cos(6,)) sin?(6;)+

((—ralalamama®ms® — ral sl amams®my?)cos®(6,)—

ro sl amatma®my®cos(8,)) cos(8s) + (Lpalpa(r2 — L)mamatm3+
Ial(rs — 1)mamy®my?)cos®(8,) + Iala(r2 — 12)ma*my*m,®cos(6,)
2]

0

(3]

0



Table 4.2 (continued)

X3 of X3

[1]

I 4cos(8,)sin(0,) + I.4sin(8,)cos(8,)
(2]

0

[3]
0

T3 of T323

1]

I.4m4cos(8,)sin(8,) + I.4mysin(8,)cos(8,)
(2]

0

[3]

0

T3 of T1y1T9292323

[1]

((Lzalya + I4I3)memamy? + ((Iz4Iy4 + L4l 3)mama?+
(Leadys + Ipglyayma*ma)my)cos(8, )sin(8,)

2]

0

(3]
0

z3 of T1y1Z2Y22273y323

(1]

(Loalys + Inalya)ma*mamyeos(8, )sin’(8, )+

((Leadys + Lal3)mama*m2 + (Lpalys + LoaIya)mams®my?)cos®(6, )+
(Ipalyq + II4Iy3)m22m32m42cos(0,))sin(()a)

(2]

0

(3]

102
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Table 4.2 (continued)

23 of 23

(2]

lyma sin(6:)sin(8,) — lsmqcos(8,) cos(6s) — lamycos(6,)
2]

0

(3]

0

23 of T3z23
1] :
I4lzmysin(6;)sin(8,) — I4lamycos(8,) cos(f3) — L.ilamycos(6,)
2] |

0

3]
0

z3 of 21 Y1T222T323

(1]
(Ix3I1:4(7'3 — 13)1n2m3m.|2 + (IxaIx.‘(T'g — ’3)"1217]32+
Ial4(rs — I3)mq*m3)my)cos(8,)cos(8,)

[2]

0

[3]

0

z3 of T 1y1TaY222T3Y323

1]

Ial q(rs — la)mz*mam43cos(8, )cos(8,) sin®(83)+

((Ial4(ra — I3)Ymama®my3 + Lalu(ra — I3)mamsma4?)cos®(0,)+
Lala(rs — I3)my*m3*my*cos(8,))cos(6,)

2]
0

[3]
0

4.4 Controllability of Inaccessible Vibratory Modes

It is well known that for a linear, time invariant system

t=Ar +BueR" (4.33)
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the global controllability can be examined by the rank of the controllability
matrix

V=[BABAB - A*1B| (4.34)

If ¥ has a rank n then the control space of u covers R" and every desired state
could be reached in finite time. However, nonlinear system controllability can
only be examined point by point (local controllability). Local controllability
indicates the reachability of a local point by any nearby point inside a small
region surrounding that local point. If every local point is controllable and
the union of all small reachable regions covers the whole state space, then the
global controllability of nonlinear system is ensured. According to Kalman'’s

discussion in [Markus and Lee, 1962], for a nonlinear system
T = f(t,z,u) (4.35)

the local controllability at (z,,1,) can be detected by linearizing the nonlin-
car cquation around the given point and then checking the controllability of
the lincar equation. This method will be used here to investigate the control-
lability of inaccessible modes. The results will show the distinction between
accessibility and controllability of vibratory modes. Recalling that compliant

manipulator system control equation is defined by

6] [4 cT ~f A
HE A B
Let
¢
B

z

331:[6} eR""*"";xz=[
]

B

and also set

] € R, ¢ = [ ] € R¥Mne¥ns) (4.37)

T —
Al C ][ f eRnp+ng (438)

h(zy,z3) = [ C A, —fa _lKﬂ J



and
=[]

then Equation 4.36 could be written in a state space form as

2.71=‘.'C2

h(zq,z2) + W(z1)u

Ly, =

105

(4.39)

(4.40)

whose variational equation around an operational point (z1,z2,u) is

532

§h(zy,x2) + 6(W(z1)u)

6z, =

bz =

(4.41)

By taking the first order approximation, the variational equation has a linear

form

6, = bz

@16331 + @26122 + W($1)5lt

where

(I’l — [Bh(azl,mg)] n \:6‘4’(’51) ] € Rng-{-ng))((ng-!-n,g)

3:01 a:L‘l
$, = M c R(no+"p)x(ﬂa+na)
a.’l?g

whose elements could be expressed in a more detailed form as

LY 8hy Ok dhy ahy
LY 90, Obn, a6, Y
dhy 8hy Shy dhy ohy
Oh 86, 863 300, B, B2
Oz, : : : :
ah,.,+,.£ 31;,.,,,;‘1 Bhngtng Ohnging  Ohngtng
| o, 30 B0ng 36 T

[ 8k oh ok Oh ... _Bh
= (% B B e

(4.42)
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where h; is the ith element of vector i, similarly

ow aw aw aw aw oW W
[—_amlu = [ ’u mu e mu wl-u gﬁ;u e mu ] (445)
and
Oh 8h Bk oh  Bh ok oh
[31‘2 = [ 86, 96 86n, B85 8B, T ] (4.46)

With these defined notations, Equation 4.42 could he expressed as a linear

state equation

. 0 7 0
bt = l:q)l @2}51'—}-[[‘/]611,

= Abéz + Bbu (4.47)

where 7 is an (ng + ng) x (ng + ng) identity matrix, A € R2no+na)x2netns)

and B € R2netnp)xng

From Equations 4.34 and 4.47, the controllability matrix of the lin-

earized system is given by

¥ = [BABAB ... gwtw-ip)

_ [o W ¢, W (D) + ¢2)W

W 0, (31 + W (212, + 3,3, + BTV (4.48)

whose rank serves as an indicator of the local controllability of the original
nonlinear system in Equation 4.36. Since ®, and @, are functions of 8, 3,
8, ,B, and u, and W is a function of § and S, the rank of ¥ relies on the
specific operational point (z,,u,) around whicli the systemn is linearized. In
the following sections, two examples will be presented. The first example
is a one-link arm modeled with one lumped lateral deflection, where due to
the specific kinematic structure the vibratory mode is always inaccessible
and uncontrollable. The second example is a two-link arm modeled with one

lumped lateral vibratory mode which turns out to be controllable even in an
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inaccessible position. Both examples are studied by the symbolic program
MACSYMA, and due to computer memory limitations, some simplifications

are applied in order to obtain the final results.

4.4.1 Example 1

The first example model is shown in Figure 4.4 (a), in which (X, Y, Z)
is the global coordinate frame, and (X1,Y1, Zy) is the local frame of the arm.
The link has mass m; and moment of inertia I;. The mass is located at a
distance r from the joint axis, and the link length is 1. A payload is added
to the end of the link, which lias mass m, and moment of inertia I,. The
vibratory mode is modeled at the end of the arm and parallel to Z; direction.

Then the dynamic equations are described by

(I, + I + myr? + 711,212)é = u
mzﬁ +Kkpg =0 (4.49)

where I is the modeled spring stiffness. Letting a = (Lh+ I+ myr? 4 mgl?),
the inverse of the inertial matrix is expressed as
A C? Lo

= 4.50

[ C 4 0 L (4.50)

which indicates that the 1 x 1 dimensional C matrix is given by C = 0. This

suggests that oscillation @ always remains inaccessible. Since the derived

dynamic equations are linear and time invariant, they could be expressed in

a state space form as

6 0 0 10 6 0
' 0 0 01 B 0
g =10 o oollal+lzle (4.51)
. I- . a
3 0 —;n—‘; 00 Jéj 0
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and the controllability matrix is

U = (4.52)

< Oalm
o OO

0
0
0

Ol O O

000

which, possesses only two independent columns so it has a rank of two. Since
¥ does not have a full rank, the system is uncontrollable. Henee in this exam-
ple, the controller loses both controllability and accessibility of the vibratory

mode.

4.4.2 Example 2

The second example is depicted in Figure 4.4 (1), which is a two-
link arm modeled with one vibratory mode. The first link has a local frame
(X1,11,Z)), and that of the second link is (X3,Y3, Z,). The second link is
oscillating laterally along Z, direction. Each link length is indicated in the
figure. For simplicity in analysis, the links are assumed massless, only the
payload 1s considered to have a mass my and a moment of inertia Iy around

the X, axis. Then the system dynamies is given by

én Uy
I 6, | +f=1] u (4.53)
B 0
or
6,
b, | = ()= +(I")
g
= h+Wu (4.54)

in which I* is the generalized inertia matrix which is symbolically derived as

I3 + maf? + (mal] — I3) cos?(8;) —mylysin(6,)3  —maly cos(6;)
I" = —mgaly sin(6,)0 mgl2 0

—17]312 COS(92) 0 ma
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my, 1,

B(Zy)

(8) : Example 1

6,

(b) : Example 2 X Figure 4.4: Controllability Models
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and f contains the Coriolis, centrifugal, gravitational, and spring force cffects,
and is described by

—2(m3l2 — I) COS(GQ)Siﬂ(Qg)éx 6, — msl, 003(62),363 + 2mgﬂélﬂ
f = (mslj ~ I3) cos(6,) sin(82)67 — 2mal; sin(6:)8; 8 + magl, cos(6,)
—m3f0% + 2m3lysin(6,)8,6, + K3

where g is the gravitational acceleration, and K is the modeled spring stiff-
ness. The inaccessible position of the modeled vibratory mode is determined

from the submatrix C of (I*)~!, which has a symbolic form

C = % [mglg cos(6;) mil cos(Gg)sin(Og)/?]

= (miL{%)sin?(8;) + (Mm3126?) cos?(6,) (4.55)
Apparently, cos(6,) = 0 gives the inaccessible position, i.c., when the second
link is vertical and collinear with the first joint, or 8, = 90 degrees, both
actuator inputs can not access . To check the local controllability in this
maccessible posttion, the nonlinear system defined in Equation 4.54 will be

lincarized around an opcerational state described by

{61,62, ﬁ» éh é’hB) Uy, u?} = {010’900) 0) élo’é'lm BO) Uto,s u20}

where subscript o denotes the constant values of a selected operational state,
and 8, is chosen to be 90 degrees to include the inaccessibility condition. The
linear variational equation éz = Adz + Béu of the nonlinear system is derived
symbolically around the operational point and the matrices A and B take the

following form

F 0 0 0 1 0 0 7
0 0 0 0 1 0
0 0 0 0 0 1
A=10 261,63, o 0 0 0 (4.56)
0 (msl%—l:n)fl%ﬁ-maylz %l:l‘;_ ggg 0 2?_2&
i 0 _.‘LLI;;IZ m_:gﬁfi_::ﬁ —212920 —‘212élo 0 J
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0 0 ]
0 0
0 0
B=|1 g (4.57)
I 1
0 m
| 0 0

A controllability matrix ¥ is formed by using the above A and B. In this
case, ng = 2 and ng = 1, so ¥ is 8 6 x 12 matrix. To check the full rank of

¥, the determinants of two submatrices of ¥ are derived, which are

det{B AB A*B) = 2,10 (4.58)

m3I313

and

det[B A’B A*B) =

1662,03, [Gaothro _ (mably — K)Bo] (4.59)

mi3 | Is mjl;
since these determinants can have nonzero values, ¥ can have a full rank.
Therefore, the nonlinear system is locally controllable around an inaccessible
position. This result indicates that inaccessibility does not necessarily imply
uncontrollability. But as pointed out before, in an inaccessible position the
vibratory mode is governed by nonlinear terms composed of centrifugal, Cori-
olis, gravitational, and spring forces. Without the direct access of the control
input, it is very difficult to dampen the vibrations through the nonlinear term

f, and spring force I 8.






Chapter 5

Controller Design for Compliant Manipulators with
Well-Known System Parameters

In a linear system of equations Az =y, where A € RreXty z € R™s,
and y € R™, the matrix A assigns a y for a given . Let X’ C R"* be the sct
of all such z and Y C R™ be the set of corresponding y, then A" is defined
as the domain of A and Y is the range of 4. If the mapping from X" to Y
is bijective, i.e., one-to-one and Y = R™, then an inverse map exists such
that for cvery element y € R™ there is a unique solution ¢ € X' satisfying
the equation. Since A is generally not a full-rank square matrix, existence
and uniqueness of solution z is not guaranteed for any y. For example, if
ng > n,, let XL C A be a subset defined as X+ = {zt: Azt =0; 2t € A}
. i.e., X't is the nullspace of 4, then for cvery element a* =z + 2, z € .V
and z1 € X+, Az* = y, which means that for a given y the solution is
indecisive. Another example may be given as follows: if n; < n, and if we
let Y+ C R™ denote the complement of Y, then for a given y* = y + yt,
y € Y and y* € V!, there is no solution for the equation Az = y*, which
means that since A has a rank smaller than n, its column space can not span
R, hence solution does not exit unless y* is in the column space of A. The
first example is sometimes referred as redundant problem, and the second
example is overdetermined problem. It will be shown in this chapter that

the controller design of compliant manipulators has the nature of solving

112
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an overdetermined problem, but after choosing proper control criteria the

controller design becomes solving a redundant problem.

5.1 The Difficulty of Ideal Acceleration Assignment

According to the third chapter results, compliant manipulator sys-

tem dynamics have a common symbolic form

Ay 26 fi u
B Az][g]+[fz+m]=[o] 1

for both distributed and lumped parameter models, in which the first ma-
trix represents the generalized inertia associated with nominal and vibratory

modes, and its inverse is defined in Equation 4.7 as

[A, ET]”‘ A CT

4] -

Premultiplying Equation 5.1 by the inverse above, the dynamic equations

(k) [2] e

Ideally, it is desirable to select a proper u so that the accclerations obtain the

X A

become

PID state feedback and feedforward values defined by the following relations.
é Uy

v | o= 5.4

HEH e

w o= O, 4 Kup(6—6,) + K000 — 0,) + K1 {_ - 9,)dt}

Uz = Er + I(uﬁ(,B. - ﬂr) + I(Pﬂ(ﬂ - ,Br) + I&’Iﬁ {"' /(ﬁ - ﬂr)dt} (55)

where

in which 6, and f, represent the desired states, and K,;, K,;, and Kp;, ¢ =

6, B, are separately the stable velocity, position, and integral gains with



114

appropriate dimensions. Generally, 9, is predefined by given task, and 3, and
its time derivatives are chosen to be zero in order to climinate vibrations.
Additionally, the feedback gain matrices Ny, Iy, and Ij; are diagonal which
decouple Equation 5.5. If the acceleration assignment is achieved then the

combination of Equations 5.4 and 5.5 produces

(b= 8,) = KuolB — 6,) — Kpo(6 — 6,) + Koo { / (6 — 9,.)(“} —0

(B =) — Kusllh = ) = Kool — B0 + Kia { [B= B2t} =0 (50)

which indicates that by choosing stable feedback gains nominal joints will
track the given task trace, i.c., § — 9., and structural oscillation will be
removed at the same time, i.c., 8 — B, = 0. However in Equation 5.3, both
acceleration and nonlinear terms in the left-haud side of the equation are in
Rrotns space, but the control space of u is composcd by the 1 column veetors
of [AT CT]T which covers only a portion of R"#ms. So for a given desired
acceleration [u? w7, its sum with the second nonlinear term in Equation 5.3

might not reside in the control space of w, which means that by defining

y = [ - } + ([ o ] fi+ [ i: ] (f+ I\'ﬂ)> (5.7)

A= [ fé,l ] (5.8)
and setting = = u, finding an ideal acceleration assigninent u is cquivalent to
solving an overdetermined equation Az = y. Obviously, a solution z exists
only when y is in the range of 4, which is generally difficult to verify for a
moving robot. Therefore, direct acceleration assignnent is not practical for
the control of compliant manipulators due to the dimensional mismatch be-
tween the number of modeled degrees of frcedom and the available actuators.

By contrast, in the control of rigid manipulators where structural compliance
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is neglected, every joint, or degree of freedom, is accompanied by an actu-
ator, so direct acceleration assignment is possible after nonlinear compen-
sation of Coriolis, centrifugal, and gravitational forces. Unfortunately, such
nonlinear compensation techniques can not be extended directly to compliant
manipulators where additional vibratory modes are added to system motion
description.  Henee, dimensional mismatch makes the control of compliant

manipulators a difficult and thercfore challenging task.

5.2 The Theorems of the Lyapunov’s Second Method

Since direct acceleration assignient is not applicable in the control
of compliant manipulators, certain stability criteria must be adopted to fa-
cilitate the controller design. The stability criteria chosen in the following
controller designs are derived by Lyapunov, which are stated in the following

theorems [Landau, 1979).

Theorem 5.1 (Lyapunov) Consider the free dynamic system

L= fla,t) (5.9)

where f(0,t) = O for all t. If there exits a real scalar function V(x t) with

continuous first partial derivatives with respect to x and t such that
1. V(0,t) =0 for all t

2. V(z,t) 2 afllzll) >0 for allz # 0, x € R, and for all t, where o) 18

a real, continuous, nondecreasing scalar function such that «a(0) =0
J. V(z,t) - oo as ||z]| — oo for all t

i V= aV(z,t) = ZV + (gradV)T f(z,t) < —v(flz]l) < 0 where Y(:) i3 @

real, continuous, scalar function such that v(0) = 0
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then the equilibrium state z, = 0 13 globally asymptotically stable, and V(z,t)

is a Lyapunov function for this system.

Corollary 5.1 The equilibrium state T = 0 of the autonomous dynamic

system
&= f(z)
is globally asymptotically stable if there czists a real scalar function V(a) with

continuous first partial derivatives with respect to @ such that

1. V(Q)=0
2. V(z) >0 forallz #0,z€R"
3. V(z) = oo as ||z|]| = o

4. V:%V(§)<0for allz#0,2€R”
Corollary 5.2 In the above Corollary, condition 4 may be replaced by

4.1 V(z) <0 forallz#0, z€R"

4.2 V(Q(t;go,to)) does not vanish identically int > tq for any to and 25 # 0,

where Q(t;go,to) is a solution of Equation 5.9 and $(to; 2o, o) = o

Finally, for linear time-invariant free dynamic system, Lyapunov provides the
following theorem giving the nccessary and sufficient conditions for globally

asymptotically stability.

Theorem 5.2 The equilibrium state z. = 0 of a linear time-invariant free

dynamic system
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is (globally) asymptotically stable if and only if given any positive definite
matriz QQ there ezists a symmetric positive definite matriz P which is the

unique solution of the matriz equation
ATP 4+ PA=—-Q

and V = 2" Pz is a Lyapunov function for the system in Equation 5.10.

In applying the Lyapunov’s second method, a continuous, positive
definitc scalar function, or the Lyapunov function, is defined first. This posi-
tive Lyapunov function generally represents a distance, or error, between an
instant statc and the desired state. Then by formulating the system con-
troller properly, the Lyapunov function produces a negative rate as long as it
remains a positive value, which means that the distance and henee the state
error is reduced continuously until a zero error is met. Since this method
studies stability problem in R! space, it is very useful to solve multi-degree-
of-freedom control problems like the control of compliant manipulators, It
will be shown later that by using the Lyapunov’s sccond method the control
design becomes solving the redundant problem instead of the overdetermined

problem in the direct acceleration assignment.

Several controller structures will be introduced in the following sec-
tions. Before presenting these control algorithms, it should be noticed that to
maintain generality of the results the nonlinear nature of system dynamics is
considered in the design process. No linearization or ignoring nonlinear term
is assumed to simplify the control design problem. However, two assump-
tions are used in building the following controllers, which are: (1) system
parameters including payload are well-known, but in later example simula-

tions payload uncertainty are added to test controller robustness, and (2) all
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nominal and vibrational displacement and velocity states are available on-
line. The first assumption is generally true for a well calibrated system. As
for the second assumption, robot joint position and velocity could be read
from attached resolver and tachometers directly, and modal amplitudes and
velocities could be measured and reconstructed from strain-gauge readings.
Therefore the sccond assumption is technically feasible. Examples of on-line
measurement of vibratory states for the motion '(:ontrol of compliant arm have

been reported by [Hasting and Book, 1986] and {Cannon and Schmitz, 1984].

5.3 Orthogonal Projection Method

The first controller is designed by the orthogonal projection method.
As mentioned in the direct acceleration assignment, finding a proper input to
produce the ideal acceleration response is solving a lincar equation described
by Az = y, where A has more rows than columns. If A has a full column
rank then (ATA)~! exists, and there is a left-inverse (AT 4)71 AT such that
x = (ATA)™' ATy which represents an approximated solution with minimum

Crror

lly — Azllwin = (T — A(AT AT AT)y|

where 7T is an identity matrix and A(ATA)~'A7 is a projection matrix from

y to the column space of A. Because
AT(y — Az) =0

the solution z = (ATA)"1ATy could be considered geometrically as an or-
thogonal projection of y on the column space of A. Since the orthogonal
projection solution z can not generate the exact y, it could not be used alone

to construct the input command. However, the orthogonal projection matrix
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(ATA)~'AT is a lincar map from R™+"s space to R™ space, which allows us
to transfer control design from R™ space to Rt space where the ideal ac-
celeration [u], u]]" resides. After constructing the controller in R+ space,
the result is projected back to R™ space to obtain the final input command.
Therefore, orthogonal projection will be used as a starting point in the fol-
lowing design process. Since the orthogonal projection does not gnarantee
the ideal acceleration assignment, the Lyapunov’s second method will be em-

ployed as the criteria to build a stable controller in R"*"s space. First, the

dynamic equations defined in Equation 5.3 are rewritten as
é A A crl .
[B]=[5]u—([5]ﬁ+[Azhh+Aﬂﬂ (5.11)
then by selecting a composite input command
U= fl + Ug (512)
Equation 5.11 is reduced to
61 [ 4 cT .
2] - [#]or [ onoso
A
= [ c }uﬁvl (5.13)

where v, is defined as

CT
%=—[AJ%+Km (5.14)
2

Since submatrix A, has full rank, then the matrix a defined by

C
= ATA 4+ CTC (5.15)

o = lren| g
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is invertible. So, it is possible to choose a set of input [T wf]T defined in

Rrotns space that produces a ug in R™ by the following rclations

u ¥ ([A,T c"][é‘D—l AT CT][Z:]
= otaron| | (5.16)

By substituting the above uj into Equation 5.13, the dynamic equations be-

[g] - {fé} ]a”‘[AlTCT] {:’;‘;}Hl

_ B] B;F Uy i \
= [B2 I } [us ] 7 (5.17)

come

with

B1 = Ala_lA’{
Bz = Ca“‘AT
B3 = Ca’lcT (518)

As mentioned before, the orthogonal projection matrix
a~'[A] C7]

converts the control input from an ng vector, us, to an (np + ng) vector ,
[ul uT]T. After designing the control input [ul w17, the actual input us
is generated by Equation 5.16. In the above definitions, B; is an invertible
matrix for A; has full rank, and Bj is a symmetric matrix. Provided that C
has full row rank then Bj is also invertible. In case that B3} exists, uy and

us could be further defined as

Ug = Bl"l(ul + u6)
Uy = BS_I(UQ + U.7) (519)
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where u, and u, are the desired accelerations given in Equation 5.5, and wug
and uy will be defined later by the Lyapunov’s second method. With these
new uy and us, Equation 5.17 becomes

é _ Uy Ug B;B‘;l(uz + u’,)
[ g ] - [ ty ] * [ ur ] * [ BBl(uy +ug) | T (5:20)

where the first term in the right-hand side is the desired acceleration, the
second term is the input vector to be assigned, and the rest represent nonlinear
disturbance to the above control system. Equation 5.20 could be converted

into error-driven system dynamics by the following definitions. Let

06
er = | eRmts ey =
! [ ﬂ - ﬂr ] ’ l
ey (5.21)
é3 = —¢, ; e=| ey | € R¥notna)
€3
be the error states and
- [ I\’pg 0 (ne+ng)x(notng)
K, = 0 Ky eR (5:22)
_— [ Ky 0 (no+ng)x(ne+ng)
K, = | o K, | eR (5.23)
- [ Kp O - (notng)x{ng+ng) )
_ ‘ (ngtn ng+n .24
I\[ _ 0 Alﬂ | € 7\’ (5 )

be the new grouped gain matrices, then Equation 5.20 could be transformed

into error-driven system dynamic equations
e = Ae + Bw (5.25)

with

0 I 0
A=| K, K, K;| € R3}netre)x3notny) (5.26)
-Z 0 0
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0
B = { T } (5.27)
0

w= [ ue } + [ BB (uz +ur) ] +m (5.28)

and

uy By B7 (u1 + ue)
where T is an (ng + ng) x (ne + ng) identity matrix. For constant feedback
gain matrices I\p, K,, and I, Equation 5.25 is a lincar time-invariant system

with disturbance w. So, a quadratic form Lyapunov function is sclected as
V=elPeeR! (5.29)
whose derivative could be derived from Equation 5.25 as

V = éTPe+e'Pé
= eT(ATP + PA)e + 2¢T PBw

= —eTQe + 2¢TPBw (5.30)

where P and Q are positive definite matrices with P and € R3(netne)xd(natns),
Also by Theorem 5.2, for a stable matrix 4, P and Q satisfy the following

relation

ATP+ PA=-Q (5.31)

which is often called the Lyapunov matriz equation. Notice that A 1s & stable
matrix whose eigenvalues are decided by the gain matrices in Equation 5.26.
In Equation 5.30, V is composed of a negative quadratic term and a nonlinear
disturbance w. Recalling from the definition of w in Equation 5.28 that the
control input ug and u7 in w are left to be decided. Therefore, they could be

selected such that

eTPBw <0 (5.32)
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is satisfied. If Equation 5.32 is accomplished then V > 0 and V < 0, for all

e # 0. Consequently, according to Corollary 5.1, ¢ — 0 which implies that

§ — 6, and § — B, = 0. Since one of the sufficient conditions for <0

is e’PBw = 0, ug and u; will be solved based on this criterion. First by

dividing P into nine (ng + n4) x (ng 4 ng) submatrices

Pl p2 P3
P=|Pr p, P
Pf PI Py

and following the previous definitions that €T = [e] eI

then

(’TPB = f’1P)+(IP4+C P7

lof o7
= [0 n3)

(5.33)

el] and B = 0T0]T,

(5.34)

with 7, € R" and 5, € R". By these new notations, the scalar equation

e’ PBw = 0 could be expressed by

e'PBw = i +4¥B,B7 Yaug + (nF +yfBf

B u,

+ (711 B BJ Uy + 712 B2B1 uy + [771 7?2 ]71)

Y WTug + 7,
= 0eR! (5.35)
with
U= (] + 07 BaB7Y) (0F + nT B B3] (5.36)
zm=[Z§JeR“Mﬂ (5.37)
and

Y2 (771 BTB Uz + 1, B2Bx up + [771 72 ]71) (5-38)
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Since Equation 5.35 is a scalar equation, and ug is an (ns + ng) vector, finding
a ug satisfying Equation 5.35 is solving a redundant problem. Here a solution

with a minimum norm |jug|| value is selected, which 1s

_ow
ug — m\p (539)

provided that ¥ # 0. After solving ug, the controller design is accomplished.
Now, V > 0 and V < 0, for all e # 0, and according to the Lyapunov
theory, the error state converges asymptotically to null state. Conscquently,
both nominal trajectory tracking and vibration elimination are retained. It
should be noticed that by using the Lyapunov stability criteria, compliant
manipulator control design is transformed from an overdetermined to a re-
dundant problem. To construct the final command input u, the ug defined
in Equations 5.37 and 5.39 and the ideal accelerations u; and u; given in
Equation 5.5 are substituted into Equation 5.19 to produce u4 and us which
are then projected back to R™ space to generate ua by Equation 5.16. The
final command input u is the sum of u3 and nonlinear term f; as stated in
Equation 5.12. Then according to the above analyses, the input u will ful-
fill the Lyapunov stability criterion and hence stabilize the nominal tracking

motion and structural oscillations.

5.4 Restrictions of the Projection Method

In developing the control law by the projection method, two analytic

assumptions are proposed. First, it is assumed that
B3 = CG_ICT

is invertible, which means that C must maintain full row rank during the

control process. Since C is an (ng x ng) matrix, to have a full row rank



125

implies that ng < ng. So the projection method is restricted to the cise that
the number of modeled vibratory modes is not grcater than that of nominal
joints. Also, inaccessible vibratory modes must be avoided during operation,

since a row or rows of zero in C will make B; not invertible.

Another assumption applied on Equation 5.39 is that ¥ # 0. Ac-
cording to Equation 5.35, when ¥ = 0, the derivative of the Lyapunov func-

tion in Equation 5.30 becomes
/= —eTQe + 27, (5.40)

where 7, is given by Equation 5.38. In that case, V is affected by the nature
of ¥3. If 42 remains negative then V < 0 and the stability proof remains valid.

Otherwise, V becomes positive when
272 > eTQe > 0 . (5.41)

which means that when e is inside a spherical ball, eTQe, bounded by 2v,, the
asymptotical convergence of the crror state is not ensured. Geometrically, an
error state outside the spherical ball will be driven toward the ball continu-
ously by control input, once the error state enters the ball it will be confined
nside the ball but the destination is uncertain. Obviously, by reducing the
size of the spherical ball, the uncertain error state will set closer to zero. In
the following, we will discuss how to reduce the size of uncertain spherical

ball. Recalling that the definition of v, is given by
Y2 = (i B} B3 'wa + 0] BaBi ws + [n] 0l |m)

where By, By, B3, and v, are system properties which can not be manipulated

directly during a task, and u; and u, are the ideal accelerations which can
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be reduced only by using small gains. Hence, the major reduction must be

accomplished by n; and 7. By Equation 5.34
ol = TP+ ef P+ es Py

where ¢;, i € {1,2,3}, are the on-line state errors, so 7; and 7z can be reduced
by choosing small P, P,, and P;. However, positive definite matrix P is

generally solved numerically from the Lyapunov matrix cquation
ATP + PA=-Q

for a given stable matrix A and a positive definite matrix Q. So the sclection
of P is not arbitrary because the Lyapunov matrix equation relationship must
be maintained. In the next section, an explicit solution of P for a specific
set of A and Q will be presented. These results will show how to obtain a
desirable P structure from the adjustment of Q values. Hence a small P could
be constructed in terms of @ to reduce the uncertain ball in the above stability
analyses. Case studics of using the orthogonal pro jection method to control
a six-link manipulator modeled with four joint or four link compliances are

reported in [Tosunogly, Lin, and Tesar, 1990, a}.

5.5 Solution of the Lyapunov Matrix Equation

According to Theorem 5.2, for a stable matrix A and a given positive

definite matrix @, there exits a unique positive definite matrix P such that
ATP+ PA=-Q

Hence in general control design, P is not chosen directly but solved from the
Lyapunov matrix equation for a given pair of A and Q. Generally, numerical

methods are used to solve the Lyapunov matrix equation. However, Q is
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practically chosen to be diagonal for high dimensional systems, and the gain
matrices I{,, IV,,, and I} are usually diagonal to decouple the final state
cquations. For these particular A4 and @ matrices, P can be solved explicitly

in terms of the submatrices of A and @). In Equation 5.2, A is given as

0 I 0
A= I\’p I\’u I\'I € R3(719+11‘9))(3(719+n9)
- 0 0

and in Equation 5.33, P is divided evenly into nine (ny + ng) x (ng + ng)

submatrices ) ]
P P P
P=|PI' P P
Pr TR,
For a diagonal ) defined as

(@ 0 0
Q=0 @ 0 (5.42)
L0 0 Qs

where Q;, ¢ € {1,2,3}, are (ng + ng) x (ng + ng) diagonal submatrices, the
submatrices of I” have the following explicit solutions:

2P, = (K} - K,)DQ, + (K} — K,K;)DQ, + (I - KJK;")DQs

2P, = —K,DQ,+ K;DQ, + K:K;'DQs

2Py = —K/DQy+ K,K;DQ; + K,KXK['DQs

2Py = D@, - K,DQ,; - KUKI"IDQ;,

2P = —K7'Qs

2P = —-K,K/DQ+ KNiDQy+ (K}+ K, - KN, K7")DQs (5.43)
with

D= (KK, - L) (5.44)

This solution is obtained by using the facts that diagonal matrices remain

commutative under multiplication, and P is the unique solution of the Lya-

punov matrix equation. Notice that P;, i € {1,2,3,4,5,6}, are diagonal
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matrices and linear functions of Q1, Q2, and Q3. Since A is a stable matrix,
and K,, K., and I are diagonal matrices, it could be shown by the Routh-
Hurwitz criterion that (KpK, — K 1) > 0 which automatically guarantees the
existence of D in Equation 5.44. In the above explicit solutions, P is a linear
function of Q; for a given A; this relationship allows a direct regulation of Q
values in order to affect the structure of P. For cxample, in the orthogonal
projection method, in order to reduce the 1, and 72 defined in Equation 5.34,
small @y, @2, and @3 can be employed to produce small P;, Py, and Ps ac-
cording to Equation 5.43 results. Application of the above explicit P will be

demonstrated later in example simulations.

5.6 Modified Controller Design

In the orthogonal projection method, the control law requires the
computation of Bi, Dz, B,, By, and B3 ' which creates burden on real-
time operation. Also the controller is limited to compliant systems with
ng > ng. To remove such restrictions, new control algorithms are proposed

in this section. The system dynamics in Equation 5.11 are given here again

ECI AT

Now, the composite input u is defined as
u=fi+ Al”lul + Crup + uy (5.40)

where fi represents the feedforward component, u; and ug are the ideal ac-
celerations given in Equation 5.5, and uz will be defined in stability analysis.
Since A; has full rank, its inverse exists and is introduced in the above equa-

tion. The (ng X ng)-matrix C* in Equation 5.46 represents a general matrix
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whose exact structure is case dependent and will be discussed below. Substi-

tuting the composite v into Equation 5.45 results in the familiar form

[g]=[22}+[’é‘Jua+7 (5.47)

where

y= [ (CC™ o T } ¥ [ e ] - [ " } (L +KB)  (5.48)
and I’ € R™*" is an identity matrix. Depending on the dimension of C,
different C* could be sclected to simplify the structure of 4. Since C is an
(15 x ng) matrix, when ny > ng, i.e., the number of modeled vibratory modes
15 not greater than the number of inputs, and C has a row rank of ns and no
inaccessible vibratory mode occurs, then the right-inverse of C, C*, exists.
Hence C* is selected as C* = C*, this selection causes the 7y expression in

Equation 5.48 to become

+,,. T
[ g‘ACl_l::f ] -~ [ iz }(fz + K3) (5.49)

Otherwise, when the right-inverse C* does not exit due to inaccessibility
problems or ng > ny, or the computation of C+ requires an unacceptable
overhead in controller implementation, a simple way to reduce v is to select

a null matrix C* = 0 so that v becomes

T
T= [ CA;‘S1 — Uy ] - [ i J(fz + IA) (5.50)

Both simplified v structures will be used in the later example studies. How-
ever, despite various possible 4 forms introduced above, the controller will be
designed for the general form in Equation 5.47. Following the error-state def-

initions in Equation 5.21 and the stable matrix formulation in Equation 5.26,
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the error-driven system dynamic equations for Equation 5.47 are expressed
by

. A,
e=Ae+B([C]u3+7) (5.51)

where the control component uz becomes input of the error-driven system.

Again, the Lyapunov function candidate V is selected in a quadratic form
V=elPeeR' (5.52)
whose time derivative together with Equation 5.51 yields

V = —CTQC + ZCTPB ([ /é,l ] usz + ’7) (5.53)

where P and Q are 3(ng + ng) x 3(ng + ng) positive definite matrices and
ATP + PA=-Q (5.54)

Although there arc many possible selections of uy to cause V < 0 for all e # 0,
here ug is selected to generate V = —eTQe. That is, letting n and y denote
the following quantities

n = [ATCT|B"Pce R™

pu = e"PBye€ R! (5.55)
uy is solved from the scalar equation
plus +p=0 (5.56)

Since ug is an ng vector, the above scalar equation is a redundant problem
hence more than one solution exist. Therefore additional criterion could be
introduced to assist the selection of us. Two such criteria are presented here.

First, Equation 5.47 is restated as follows

HEHEEES
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Since the first term in the right-hand side is the desired acceleration, by
minimizing the disturbance caused by the last two terms, the acccleration
response will have the best approximation to the ideal result. Hence, the

problem becomes finding an optimal u3 that minimizes

|

while u3 is subject to the constraint of Equation 5.56. The optimal solution

[ /é,‘ ] uz + 7” (5.57)

to this problem is given by

(5.58)

—nTZIAT CT
U3=—Z{[ATC’T]7+” n'Z[Af C ]77}

nTZy
where
-1

Z = ([A{ CT) [ ’é‘ D (5.59)
Due to the full rank of A,, Z is positive definite and hence nonsingular,
Apparently, uj in this design demands some computational effort which makes
it unattractive for real-time implementation. Therefore, another criterion is
proposed, whose result will be used in the following example studies. Now, the
object is to minimize |Jus|| which is subject to the Equation 5.56 constraint,

and the solution is simply given by

Uz = — (—,—L—> n (5.60)

nTy
where 7 is assumed to be nonzero. The situations when a null vector 1 occurs
for ¢ # 0 will be discussed later. For the designed us values, V > 0and V < 0
hold for every e # 0, which means that asymptotic stability of error state is
ensured and consequently tracking of desired trajectories and elimination of
oscillations are obtained since the error states are defined as the difference
between plant and reference values. Notice that the modified control algo-
rithms have much simpler structures than that of the orthogonal projection

method, therefore, the former control laws demand less computational effort.



5.7 Effect of Matrix P on System Response

In the orthogonal projection method, a P matrix with relatively
small magnitude entries is suggested to improve system stability. Here, the
effect of P on controller performance will be analyzed. To investigate sys-
tem response, the u3 designed in Equation 5.60 is substituted back to Equa-

tion 5.47 which results in a compact form

[é]=[z;]+(f—5)7 C(5.61)

B
with
S = ——(RwT)
T oTRv vy
v = DBTPe
R = [ATCT|T[AT C7) (5.62)

where « is defined in Equation 5.48 and 7 is an (ng + ng) x (ng + ng) iden-
tity matrix. Note that S is idempotent; that is, §5? =8, and (T — S) is also
idempotent. However, since S is not a symmetric matrix, (Z — §) is not a
projection matrix. Another property is that vT is a left nullvector of (T — S),
i.e., vT(T — §) = 0, which is a result of Equation 5.56. In Equation 5.61,
when (Z — S)y approaches to zero, the controlled system approaches the idcal
acceleration. According to Equation 5.62, P is a constituent of S, so the
selection of P can affect the value of (Z — S)7v; hence, improve system motion
response. Furthermore, recalling the definition of Bas B =[0Z0]7, vin
Equation 5.62 takes on the form v = Pye; + Pies + Pses, which indicates
that only P, Py, and Ps submatrices are involved in the computation of v,
therefore, only these submatrices need to be monitored to affect S and hence

control response. Once the preferable P, P;, and P structures are decided,
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they could be generated by adjusting the Q,, Q,, and (3 submatrices defined
in Equation 5.43. Unfortunatecly, the nonlinear nature of Equation 5.62 hin-
ders the cffort of finding a constant P matrix analytically that minimizes the
disturbance (Z — §)y. However, according to our case study results, a large
difference between the first ny and the next ny diagonal clements in Py, Py,
and Ps submatrices will enhance controller performance. This characteristic
behavior will be demonstrated later in the case studies, but an explanation is
given here. Since the v in Equation 5.62 is defined as v = Pyey + Pyey + Pses,
the first ng diagonal clements of submatrices P, Py, and Ps are the gains of
nominal state errors in e;, €z, and ej, while the next ng diagonal clements
are the gains of vibratory state errors. A large difference between these gain
elements will emphasize the errors of nominal states but suppress the effect
of vibratory state errors. Since the nominal states are smooth and compar-
atively slow-moving in contrast to the high frequency oscillations, the large
difference arrangement on the P submatrices will reduce the high frequency
vibrational disturbance on S and consequently produce a better system re-

sponse,

5.8 Effect of Matrix P on System Stability

One assumption used in the above derivation of Lyapunov stability
is that 1 is not a null vector for all e # 0. If p = 0 for some e # 0 then by

Equations 5.53 and 5.55 the asymptotical stability is uncertain when
2u > ef'Qe >0 (5.63)

To choose a matrix P to improve the stability region, the structure of n will

be analyzed from the inverse identity defined in Equation 4.7 which gives C
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c = —A;‘E(Al—ZTA;‘E)—I
= —A'TA (5.64)

A substitution of the above C expression into the 7 defined in Equation 5.55

results in

n = [AT CT|BTPe = [A] (—ATZTA7" )
= AT[Z(-STA;)o (5.65)

where T is an (ng X ng) identity matrix. In the above equation, 4, is a non-
singular matrix, and [Z (—=ZTA7 T)] € Rrox(retne) which has a nullity of ng.
Therefore, 7 becomes zero when v is in the null space of [Z(—=ZTA;T)]. How-
ever, due to the geometric dependence of A; and T on 8 and B, identification
of this null space is & demanding task especially for 2 moving manipulator.
Hence, a qualitative analysis is given to this problem. As the submatrices
of a generalized inertia matrix, ¥ and A, generally have a similar order of

magnitude, therefore, the submatrix (—ZTA;7T) has entries with a small or-
der of magnitude perhaps around 1, which means that [Z (=ZTA;7T)] could
be roughly represented by

1 ... 0 £1 .- £1

ST S - (5.66)

0 --- 1 %1 ... 1
so when the entries of (1ng+ng)-vector v hasa large difference between the first
ng and the last ng elements, v will be away from the null space of [T (=ZTA;7T)]
hence [Z(—E£TA;T)]v # 0, which further implies that n # 0 for all e # 0. This
result supports the assumption used in the stability analysis. Recalling that

v = Pye; + Piea + Pses, in order to create a v with a large difference between
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the first ng and the last ng elements, P, Py, and Ps could be constructed with
a rclatively large difference between the first ny and the next ns diagonal ele-
ments. This provides us a guide on the sclection of P values. Coincidentally,
such P structures are also suggested to enhance the controller performance in
the last section. Of course, the above analyses only give a qualitative solution

to avoid a null 5 which is also affected by the on-line error-state values.

5.9 Numerical Simulations on a Six-Link Manipulator

In order to test controller performance, numerical simulations are
conducted on three flexible manipulators which have the saxﬁe kinematic
structure but different compliant components. All three cases use the modecl
of a six-degree-of-freedom Cincinnati Milacron T3-776 industrial robot shown
in Figure 5.1. The first example considers six joint compliances of the robot,
the sccond and the third models contain three compliant joints and two flex-
ible links. The compliant joints modeled in the second example are the first
three joints, also the forcarm and upper arm are considered flexible whose
lateral deflections are approximated by two orthogonal translational springs
located at the end of cach link. To test the generality of the proposed con-
troller, a third example is added to the case studies. The third model has
the same number of vibratory modes as the second example except that the
wrist is compliant instead of the first three joints. Figure 5.2 shows the spring
model depicting the joint compliance modeled in the simulations. Figure 5.3
presents the orthogonal linear springs used in approximating the lateral de-
flections of each flexible link. The spring stiffnesses used in the case studies
arc arbitrarily chosen for illustration purposes, however, they are approxi-

mately 2 to 5 times softer than the actual values measured by [Sklar, 1988]



136

THRER NOLL WRIST FRONT WRIST GEARBOX WRIST DRIVE SUB-ASSEMBLY

ARM
AL—aowmus n—‘.-'-*- ]l

\.A‘

NS

ELBOW
YOKE

ELOOW DRIVE SUB-ASSEMBLY

SHOULDER AXIS
SHOULOER DAIVE

SUB-ASSEMBLY
{BEHINO SHOULDER
HOUSING)

BASE SWIVEL

BASE HOUSING
TURNTABLE
GEARBOX
ORIVE

PAV,

Figure S.1: Cincinnati Milacron T3-776 Robot



137

i th
Link

i th
Actuator

Figure 5.2: Joint Compliance Model

Orthogonal
Translational
Springs

Figure 5.3: Lumped Link Compliance Model
of Upper Arm end Forearm



138

and [Behi, 1985]. The system parameters of the T3-776 robot are listed in

the following tables.

Table 5.1 T3-776 Kinematic Parameters

Link Length (m) | Center of Mass (m) Offset
(%, 3,2) (,v,2) | Avgle (deg)
Tink1 | (0, 0, 0.8128) 0, 0, -0.4318) 0
Tink 2 | (1.1776,0,0) | (0.508, -0.0254, 0) 90
Link 3 0, 0, 0) (0.1016, -0.1778, 0) 0
Lick4 | (0, 0, 1.307) (0, 0, -0.508) 90
Link 5 (0, 0, 0) (0, 0, 0) 760
Tink 6 | (0, 0, 0.1524) (0, 0, -0.1016) 60
Payload (0, 0, 0.0254)
Table 5.2 T3-776 Inertial Parameters
Mass | Moment of Inertia ( kg.m?)
(kg) (Ixr’ Iyy’ Izz)
Tink 1 | 317.5 (0, 0, 29.3)
Tink 2 | 680.4 (5.9, 52.7, 43.9)
Tink 3 | 453.6 (49.7, 7.61, 49.7)
Tink4 | 68 (0.59, 0.59, 0.35)
Link 5 | 36.3 (0.23, 0.23, 0.06)
Link 6 | 27.2 (0.12, 0.12, 0.06)
Payload | OL. (0.06, 0.06, 0.06)

Table 5.3 T3-776 Actuator Parameters

Joint 1 2 3 4 1 5| 6
Inertia (1073 - kg - m?) 42121(21;13]13]|0.8
Damping (N - m/(rad/s)) 04104({03(04]030.3
Resistance (ohm) 08/08]08|08|08/0.8
Torque Constant (volt/(rad/s)) | 20 | 20 | 14 {11 | 8 | 8
Gear ratio 100 | 100 | 100 | 80 | 30 | 10

Back emf Const. (N -m/amp) | 0.5 0.5 |04 |[03]0.3]0.2

In these case studies, the numerical integration step is selected as 0.1 msec,

a larger step has been attempted but was abandoned due to numerical insta-

bility.
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5.9.1 Case 1: Six Compliant Joints

Figure 5.4 illustrates the six-link robot used in the first example
where f,---, 86 denote local joint deflections. In this example, each joint
compliance is represented by a constant torsional spring acting across the joint
as sketched in Figure 5.2. Torsional springs used in this example are assumed
massless, therefore, each nominal joint #; and the accompanying vibratory
mode B;, 1 € {1,2,---,6}, is subjected to the same structural inertial effect.
This means that the submatrices of the generalized inertia in Equations 3.48

have the same values, that is,
A=Y =3T =p/ (5.67)

Substitution of this particular property and A; = A} + J into the inverse

4 CT
¢ %]
(A1 - 27A7'E) ™ ~ (M- ITAFIE) T mTAp
—A7'T (A~ BTAT'E) T A7+ A7'E (A — £TAFIE) T BT

identity cited below

produces

A = CT=-Cc=Jg
Ay = (AT 4+ I

where J is the diagonal actuator inertia matrix defined in Equation 3.56 and
whose values are given in Table 5.3. Since in this case ng = ng = 6 and
Joint oscillations always remain accessible as discussed in the last chapter,
the right-inverse of C exists and is simply given by Ct = —J. The structure

of v in Equation 5.49 here becomes

Y= [ 2 J - [ (Ai)ti];lj—l J (f2+K:B) (568)
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Figure 5.4: A Six-Link Robot Modeled with Six Joint Compliances
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The resultant control input in Equation 5.46 takes on the following expression
u=fi+Ju;— Ju; +us (5.69)

where u; and u, are the ideal accelerations given in Equation 5.5, and the u3
defined in Equation 5.60 is used in the above controller. The above results
are valid for any n-link robot modeled with n compliant joints. Notice form
Equation 5.67 that without adding the actuator inertia J the generalized

inertial matrix defined in Equation 3.48 is positive semidefinite in this model.

For illustration purposes, the stiffness matrix for the six compliant

Joints are chosen as
K = diag[452000 339000 226000 (8500)3] Nm/rad

where (-); represents a diagonal entry repeating consecutively j times, and the
six diagonal elements correspond to the stiffness values of joints 1 through 6.
In this example, eigenvalues (~3—6—7) are assigned to the ideal nominal and

vibratory mode accelerations, which produce diagonal feedback gain matrices
Ky = [(=81)1] K, = [(~16)13) K; = [(126),)

where the first six diagonal elements are associated with nominal motion
and the last six diagonal elements are with vibrational modes. The robot is

controlled to follow nominal trajectories defined by

or(t’tf) = Aef(t tf) + 07'0

5 4 t3

where f(¢,1;) is a normalized fifth-order polynomial with f(0, tr) = £(0, ty) =
f(o, ty) = f(tf,tf) = f(tf,tf) = 0 and f(t;,t;) = 1, in which t; is the
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termination time for reference motion. In the above equation, Af is the
amount of joint movement, and 6,q is the starting position of reference trace.
The reference trajectory is chosen to have smooth start and stops in order
to avoid shocks that might trigger structural resonance. In the simulation,
actual joints will start from a position 6 distinct from the desired initial
8,o. This difference is deliberately created to test the tracking capability of
the designed controller. The trajectory parameters used in this example are

tabulated in the next table.

Table 5.4 Case 1 Nominal Trajectory Parameters
t;(sec) | Ab(deg) | 60 | 6o | 6o — b0
Joint 1 8 50 0 |-10 -10
joint 2 8 40 35 | 30 -5
Joint 3 8 -40 -55 | -45 10
Joint 4 8 40 0 -5 -3
Joint 5 8 50 0| -5 -5
Joint 6 8 20 0| -5 -5

Besides the initial position errors, a discrepancy in payload description is
deliberately introduced to test robustness of the controller to parameter vari-
ations. The controller presumes a payload of 68 kg while the system actually

carries a 91 kg payload which represents a 30 % error.

In order to avoid a null n vector for e # 0 as discussed in the
previous section, P needs to have a relatively high difference between the
part associated with nominal joints and vibrational modes. Accordingly, the

QQ values selected for this case are

Q: = [(100000)s (200)s} Q- = [(1000)s (2)s] @3 = [(100000)¢ (100)6)

and for the above given feedback gain matrices this selection generates sig-

nificantly different P values for nominal and vibratory modes, which are

Py = [(19499)s (37.57)6] P2 = [(824.4)6 (1.56)¢]  P3 = [(—16779)¢ (—26.52)¢]
P, = [(82.78) (.16)s]  Ps = [(—396.8)6 (—.40)6] Ps = [(136022)¢ (299)s]
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For these selected parameters, a simulation is conducted and the results are
displayed in the following figures. Figures 5.5(a) to 5.5(f) give the actual
and reference joint displacements. Note that an initial error separates these
two traces in each figure. Figures 5.5(g) to 5.5(1) display the joint deflections
of the controlled system, while Figures 5.5(m) to 5.5(r) show input voltages
for each actuator. These results indicate that nominal displacements show
asymptotically stable path tracking capability while residual vibrations set-
tle to static deflection values. In Figure 5.5(n), the high voltage surge at
the starting point is due to the sudden release of the system, which might
physically exceed actuator saturation voltage values. In order to study this
problem, the same simulation is repeated with a +50 volt bound on each
actuator. The results are presented in Figures 5.6(a) to 5.6(r). A comparison
of both simulation results suggests that the system response remains almost
identical, which implies that for this simulation, controller performance is
not sensitive to voltage saturation. Note that in Figures 5.5(m) to 5.5(r)
and Figures 5.6(m) to 5.6(r) the high frequency, small magnitude vibrations
in control voltages at steady state are to counteract spring torques due to
residual oscillations which are considerably small as shown in Figures 5.5(g)
to 5.5(1) and Figures 5.6(g) to 5.6(1). Actually, such residual oscillations
will quite possibly be dissipated by structural damping not included in the

dynamic model.
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5.9.2 Case 2: Three Joint and Four Link Compliances

Figure 5.7 shows the model of the second example manipulator
whose first three joints are compliant and modeled by the torsional spring
depicted in Figure 5.2. Besides the joint compliances, the forearm and upper
arm are modeled as flexible links whose flexibilities are approximated by or-
thogonal springs shown in Figure 5.3. Therefore, seven vibratory modes are
modeled in this example, which are denoted by Bi,- -, B separately as indi-
cated in Figure 5.7. Since ng > ng in this example, the v structure defined in
Equation 5.50 is employed to construct the control command. The stiffness

matrix values for this case are assigned as
K = diag[452000 339000 226000 ; (3500000)4) Nm/rad ; N/m

where the same stiffness value is assigned to all translational springs. The first
three joint stiffnesses are in Nm/rad, while the last four are link stiffnesses in
N/m. The reference trajectories used in the last example are used again in this
simulation. Similar payload error is also tested here. In order to emphasize
nominal motion tracking, the eigenvalues for all nominal joint displacements
are assigned to (=3 —4 — 5), and to (-1 —2 — 3) for all vibratory modes.

The corresponding diagonal feedback gain matrices are given by
K, = [(—47)s (~11)7] K, =[(=12)6 (=6)7] Ki = [(60)s (6]

where the first six diagonal elements are the feedback gains associated with
nominal motion, and the last seven diagonal elements are that of vibratory

modes. The @ and P submatrices used in this case are

Q1 = [(10000)s (1)7] Q2 = [(5000)6 (1)) Qs = [(100000)(1)7]
P, =[(19380)6(2)7] P2 = [(654.8)6 (.15)7] P = [(—25774)6 (—1.15)7}
Py = [(262.9)6 (.11)7) Ps = [(—833.3)6(—.08)7] Po = [(78452)6 (1.82)7]
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Figure S.7: A Six-Link Robot Modeled with First Three
Joints, Upper Arm, and Forearm Compliances
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which have a large difference between the first six and the last seven diago-
nal elements to avoid a null . The simulation results are displayed in the
following figures. Figures 5.8(a) to 5.8(f) are the nominal displacements of
joints 1 to 6. Notice that each joint starts with a positional error away from
the reference trajectory. Figures 5.8(g) to 5.8(m) show the vibratory mode
deflections along the actual trajectory. Figures 5.8(n) to 5.8(s) display the
implemented voltages produced by the designed controller. Because of the
emphasis on precise nominal tracking by choosing advantageous eigenvalues
and P matrix, the nominal displacements converges satisfactorily to the de-
sired trajectories even under initial position error and inaccurate payload
information. In Figures 5.8(j) to 5.8(m), the link oscillations are bounded by
decaying envelopes around the trace of static deflection. It is noticed that all
vibratory modes are stabilized to negligible residual oscillations at the end
of motion. The nonzero, steady state static deflections in Figures 5.8(h), (1),

(j), and (1) are due to gravitational loading.

In order to test robustness of the proposed controller, a 30 % payload
error was created in the above simulations. To constrict the test conditions,
the payload error is further increased in this simulation. Now, the controller
constructs control voltage for a 68 Kg payload while carrying an actual pay-
load of 227 Kg which is more than three times of the assumed value. With
this new payload change, the last simulation presented above is repeated and
the results are shown in Figures 5.9(a) to (s). It appears that stability is
maintained in this case but joint 1, 2, and 3 displacements in Figures 5.9(a)
to (c) are affected by the large payload difference. This phenomenon could
be explained from a comparison of the new payload error (159 Kg) with the
system parameters listed in Table 5.2. Since the error is of the same order

of magnitude as the mass of links 1, 2, and 3, it creates an impact on the



165

motion of the first three joints. Notice that the wrist motion shown in Fig-
L‘u‘es 5.9(d) to (f) is seldom affected by the payload error in this case. That is
because the wrist motion is affected primarily by the moment of inertia of a
given payload. In this example, mass is the only payload error and due to a
short moment arm between the gripper and the wrist, payload error creates
little disturbance on wrist control. The effect of payload uncertainty on wrist

motion control will be presented in the next chapter.
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Figure 5.8: Simulation Results of the Six-Link Robot Modeled
with First Three Joint, Upper Arm, and Forearm
Compliances (30% Payload Error)
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Figure 5.8: Simulation Results of the Six-Link Robot Modeled

with First Three Joint, Upper Arm, and Forearm
Compliances (30% Payload Error)
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5.9.3 Case 3: A Compliant Wrist and Four Link Compliances

In the T3-776 robot shown in Figure 5.1, the forearm is designed as a
lever rotating around the third joint, or elbow. The wrist and wrist actuators
are located at opposite ends of the forearm. This kinematic arrangement
has the benefit of using wrist actuators to counterbalance the inertia of wrist
and forearm. Inside the forearm, three slender, coaxial torsion tubes serve as
driving shafts connecting the wrist to its actuators as shown in Figure 5.10.
Due to the slenderness of the torsion tubes, the wrist is softer than the first
three joints. The third example will model the torsion tube stiffnesses by
three torsional springs and also include the forearm and upper arm flexibility
in controller design. The example model is sketched in Figure 5.11, where
the first three joints are rigid and f,- - -, 8, are the modeled joint and link
vibratory displacements. In this example, the influence of P values on system
response as mentioned in the previous section will be demonstrated. The

stiffness matrix is selected as
K = diag[(8500)3 ; (3500000)4) Nm/rad ; N/m

where the first three values are wrist joint stiffness in Nm/rad and the last four
values are lateral link stiffnesses in N/m. Similarly, the robot is controlled to
follow the reference trajectories specified in the last example under the same
initial position and 30 % payload errors. First, the same set of eigenvalues,
feedback gain matrices, and P and @ matrices used in the last section are

repeated in this case, which are

K, = [(-47)6 (-11)7] K, =[(—12)6 (-6)7] K; ={(60)s (6)7]

Q1 = [(10000)6 (1)7] Q2 = [(5000)6 (1)7] Q3 = [(100000)6(1)7]

P, = [(19380)6 (2)7] P, = [(654.8)6 (.15)4] Py = [(—-25774)6(—1.15)7]
Py = [(262.9) (.11)7] Ps = [(—833.3)s (~.08)7] Ps = [(78452)e (1.82)7]
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Figure 5.11: A Six-Link Robot Modeled with wrist,
Upper Arm, and Forearm Compliances
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The simulation results are displayed in Figures 5.12(a) to 9.12(s) which show
satisfactory performance as expected.  Now, for comparison purposes, tlhe
last seven diagonal elements of @1, Q2, and Q3 submatrices are increased 100

times to

@1 = [(10000)s (100)] @, = [(5000), (100)7] Qs = [(100000)6(100);]

according to the linear relationship between P and @, the P submatrices are

then altered to

P = [(19380)6 (200),] P, = [(654.8)¢ (15)7) Py = [(-25774)5 (—-115),]
Py = ((262.9)5 (10.83);] P, = [(~833.3)5 (~8.33);] P; = [(78452), (181.67),]

This adjustment increases the last seven entries by a factor of 100 and reduces
the difference between the nominal and vibratory mode portions in P. Simu-
lation of the third model is repeated for the new P values and the results are
plotted in Figures 5.13(a) to 5.13(s). The system response deteriorates dras.
tically although the stability is maintained for the new P. This comparison
shows that a proper selection of P values can significantly enhance controller
performance. For example, in this case a large difference between the nominal
and vibrational entries in P is preferable according to the previous successful
examples. An analytical explanation for such results was presented in the

previous section regarding the effect of the P matrix on system response,
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Figure 5.12: Simulation Results of the Six-Link Robot Modeled
with Wrist, Upper Arm, and Forearm Compliances
(Appropriate P Matrix)
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5.10 Summary

In this chapter, various controllers are presented to control compli-
ant manipulators whose system parameters are assumed to be known a priori.
First, the difficulty of ideal acceleration assignment is analyzed, which could
be considered as solving an overdetermined problem. Due to the dimensional
mismatch between the available number of actuators and the modeled de-
grees of freedom, solution of a given overdetermined problem is not ensured.
Therefore, Lyapunov’s stability criterion is employed to assist controller de-
sign. Since Lyapunov stability is defined in R! space, control design even-
tually becomes a redundant problem where multiple selections for control
structure exist. Then, the orthogonal projection method is used to construct
the first proposed control algorithm. However, this method is applicable only
to systems with ny > ng. Therefore, modified algorithms are presented which
demand less computational effort than the orthogonal projection method. In
the designed controllers, the effects of the P matrix on system stability and
system performance are discussed. To obtain a desirable P structure, an ex-
plicit Lyapunov matrix solution is presented, which allows direct adjustment
of the P matrix structure through regulation of @ matrix values. Three case
studies of the modified control algorithms are conducted on a compliant six-
link robot. The first case models the robot with six joint compliance. In
this case, the controller is further simplified after exploiting the inverse iden-
tity of the generalized inertia matrix. Voltage saturation effect is also tested
in the first case. The second example uses lumped parameters to model
the first three joint compliances and the forearm and upper arm ﬂexibillities.
Controller robustness is examined by a large payload uncertainty. Finally,

generality of the proposed controller is demonstrated through the third ex-
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ample which is a six-link robot with a compliant wrist and two flexible links.
Seven lumped springs are used to model structural flexibility. The influence

of P matrix values on controller performance is also investigated in the third

example.




Chapter 6

Adaptive Control of Compliant Robotic Manipulators

In the last chapter, the controllers for compliant manipulators are
constructed based on well-known system and payload parameters. The ro-
bustness of these controllers are illustrated in computer simulations through
a payload uncertainty which represents a discrepancy between actual system
and mathematic model. The simulation results show a reliable stability on
motion control under the presence of payload uncertainty. However, con-
troller performance degrades as the uncertainty becomes considerably large,
as shown in the second example of the last chapter where payload error is
twice of the assumed value. Generally, for routine operations, the payload
range could be estimated from a given task. Therefore, a conservative ap-
proach could be to choose the average payload value as the working object
of controller. Yet, a controller designed in this manner becomes inefficient
when payload varies significantly. Therefore, when the information on wqrk-
ing objects is not known precisely or if it varies significantly, such as in mining
or undersea exploration applications, it will be desirable and very effective
to have controller adaptively adjust the commands to meet the uncertainty
and additionally provide information about the payload. Such adaptive con-
trollers not only provide robots with a sense of intelligence but also PaSsis‘t_
human operators to identify the working object. Being motivated by this

practical as well as challenging objective, an adaptive control law for compli-

212
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ant manipulators is developed and tested in this chapter.

Presentation of the adaptive controller will proceed in six sections.
The first section shows two methods of expressing manipulator dynamics in
a linear form in structural and payload inertial parameters which include
mass, center of mass location, and moment of inertia of each constituent link
and payload. By considering these inertial parameters as to be determined,
the second section introduces, for this linear system, a continuous-time stan-
dard least-squared estimation technique modified with exponential forgetting
factor. From the first two section results, an adaptive controller algorithm
achieving both motion control and on-line uncertain parameter estimation
is developed in the third section. The fourth section will test the proposed
controller through case studies. In the fifth section, update delay effect on
the adaptive controller performance is analyzed. Suggestions are given to re-
duce the impact of update delay on the controlled system response. The final
section will make comparisons between adaptive and non-adaptive control

algorithms by example studies.

6.1 Dynamic Formulation of Explicit Linear System
Parameters

It is important to have a precise dynamic description to build an
efficient controller. In robotic manipulators, dynamic equations are formu-
lated in terms of the generalized coordinates and inertial properties. The
former could be measured on-line by attached transducers such as tachome-
ters, potentiometers, and strain gauges; the latter (inertial parameters) are
composed mainly of the link length, mass, location of center of mass, and

moment of inertia of each link including the payload. These inertial parame-
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ters are generally constant for a given robotic manipulator, and manipulator
inertial magnitudes are obtainable from the robot manufacturer. Yet, it is
desirable to have occasional on-site calibration especially when manipulator
is reassembled due to maintenance, transportation, or modularized structure.
Among these inertial properties, only the link lengths can be measured imme-
diately from the manipulator. The exact link mass, center of mass location,
and moment of inertia of a completely assembled manipulator are difficult to
calibrate directly, especially after adding the inertia of driving systems. Nev-
ertheless, it will be shown later that manipulator dynamics could be expressed
as a linear equation of these not directly measurable inertial quantities so that

an on-line calibration is possible experimentally.

In the following sections, robotic dynamic equations will be derived
by both the Newton-Euler and Lagrange methods. Unlike the dynamic equa-
tions introduced in the second and third chapters, the final dynamic expres-
sions are linear in mass, center of mass location, and moment of inertia of
each modeled link. Since manipulator payload is generally constant and could
be modeled as a fixed link attached to manipulator gripper, the following
derivations are general for manipulators with or without payload. Therefore,
the results could be applied to manipulators in off-line inertial calibration or
on-line motion control and payload estimation. Structural compliances are
included in the following analysis, and lumped parameter approximation is

employed to model manipulator flexibility.

6.1.1 The Newton-Euler Method

The Newton-Euler method of deriving manipulator dynamics is to

find the force and torques acting on each link first, then to project them to
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the upstream, closer to the base, driving joints. The sum of projected forces

or torques at each joint give the corresponding actuating force of a prismatic
actuator or actuating torque of a revolute joint. Without externally applied
force and torques, the force and torque on each link considered here are due to
inertial load. It will be shown that these inertial force and torques are linear
in mass, center of mass location, and moment of inertja of each link. Before
giving the derivation, it should be noted that the center of mass location and
moment of inertia of a moving link are constants only with respect to a fixed
coordinate frame attached to the link. So, in order to distinguish a local
coordinate description from a global one, a superscript, c.g. [ is added to

each spatial vector defined in a local coordinate frame fixed in link 1.

Figure 6.1 shows a floating link, I/, with a mass m, center of mass

location !, and moment of inertia I !, whose components are

Tz I Ly I,
rf=1{r, | €R3; II'=|1, I, I, | e R®?®3 (6.1)
T, Izr Izy Izz

and due to the symmetry in I, Ly = I,, I, = I, and I,, =1,,. The
superscript [/ indicates that these parameters are defined by the lth frame
and hence constants. It will be shown that the final inertial dynamics are a

linear function of ten inertial parameters composed by
m, ry, Tyy Tz, I:cxa I:ry, I:cza Iyy; Iyza Izz

If we define P! € R? as the distance vector between the origins of frame
! and global frame, and let R' € R3 be the location of the center of mass
measured from the global origin, where both vectors are expressed in the

frame [ coordinates, then

Rl — Pl + 7.1



ﬁ (7))
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Figure 6.1 A Simple Floating Link Model
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R = Plyuwixp (6.2)
R = 151+cb’><r1+w’x(w’xr’)
[ BN

where w! = [w! wlwl]T € R is the angular velocity of link ! expressed in

frame I. In Figure 6.1, the origin of ! coordinate frame, point p, is generally
located along the axis of driving joint of link  or at the center of gripper, if
link [/ is a payload. Therefore, once the inertial force and torque are defined

at p, they can be transferred to the upstream links recursively.
The inertial force, F! € R3, at the center of mass of link [ is
F!' = mR! + mﬁl
= m(P'+§) + o' x mrl + Wl x (! x mrl) (6.3)
where §' is the vector of gravitational acceleration defined in ! frame, and in

the global frame expression, § = [0 0 g]T € R where g is the gravitational

acceleration constant. The inertial torque, 7/ € R?, at the same point is
=IOt + Wl x (I'wh) (6.4)
A shift of both vectors to the origin p of ! frame produces a force Fzﬁ with
F! = F' and a torque 7, defined by
7, = tl4rlx F
= Iw' 4w x (I'w!) + 7 x m(P + §')
+m{r! x [0 x ! + W x (W x )]} (6.5)
The last term in the right-hand side of the above equation is simplified as
follows. Given three R3 vectors a, b, and ¢, a vector triple product identity
is defined as a x (b x ¢) = (a - ¢)b — (a - b)c, hence ! x (w! x r*) becomes
rt x (W x Yy = ( crhwt — (r! - o)t

= (r'-rT - r‘r’T)Lb‘ (6.6)
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where 7 € R®*3 is a unit matrix, and r'r*" is a 3 x 3 dyad. Also, by using

the identity
ax[bx(bxa)=bxlax(bxa)]=—(a b)(bxa)
the term 7! x [w' x (w' x 7!)] becomes
rtx [whx (W x )] = whx [rf x (@ x )]
= W x (rt T — T ) (6.7)

After collecting (-)&! and w! x (-)w' terms separately, 7, has a compact form

of
rh= Lot + W x Lw' + mr! x (P'+ 3" (6.8)

with I]’p defined as

N T
Ip = Ic+m(r’-rll'—r’r’)

r 2 4 .2
Lz +m(r; + r2) Iy —mrgry I, —mr.r,
_ 2, .2
= | I,z —mryrs I,+m(ri+r?) I, —mrr,
2
| I, —mr,7; I, —mr.r, I, + m(r2 +r2)

Ipz:c Ipxy Ipa:z

= Ipyr Ipyy Ipyz (6-9)
| Lpex Iy L.

Eventually, the elements of II’, will appear in the final dynamic equations.
Since Iz’7 is a constant matrix, I' could be obtained once III,, r', and m are
identified. From both force and torque expressions, Equations 6.3 and 6.8.

it will be shown that the final dynamic equations are linear in ten inertial

parameters

ma mr.‘l:) mrys mrz, Ipx:v, Ip:cya Ipz‘Z> Ipyya Ip‘yza Ipzz

First, these ten parameters must be organized from the matrix multiplication

and vector cross product terms in Equations 6.3 and 6.8. In order to extract
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these inertial parameter, two simple notations are introduced here. The first

notation is defined as

wp w w0 0 o
W1¥] o wz 0 w w o (6.10)
0 0 w o wh oWl

and for the cross product of any two R vectors, 4 = [a, a, a3]” and B =

[b1 b 53], the second notation is defined as

l’ a, b, azb; — asb,
AxB = as X b2 = agbl — a1b3

| a3 b3 arby — azb,
( 0 —das aq bl
= as 0 —ay bz
K —asg [¢3] 0 b3
& [Ax)B (6.11)
Then, by the first notation,
. ’- Lors Lowy I, “"i
Ipw‘ = Loy Loy, Loy "";
| Dpoe Loy I, w,

— { ] {
= Ipyr""f + Lyyw, + Lpy.w!
[ Lpezw;, + Ipzywy + Ipzzwi

[ Lo ]
I

pry

r I {
Lpzow;, + Iprywy + I J

= [wl]]| e (6.12)

vy

R R

Yz

| L. |

and according to the second notation, the cross product terms in Equa-

tions 6.3 and 6.8 could be expressed by

W' x mrt = [Wx)mrt Wl x (W' x mr!) = [w!x][w!x ]mrt

mr! x (P' + §') = [—(P' + §)x]mrt ; Wl x Lw' = [w!x] LW
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With the assistance of these notations, the force and torque at point p due

to the inertial force of link ! could be expressed as

[Fg] B [(ﬁwgl) [o!x] + [w!x][w!x] 0
nlo 0 (P + %] [wh] + fwix]wt] |
e R'a;; RY € R®1O (6.13)

where a; is the vector which contains ten constant inertial parameters of link

! which are

a = [a1a; - ao)” € RY

= [mmromr,mr, Loy Loy Lo Ly Lys Taz)” (6.14)

So far, the inertial force and torque, F} and 7}, are l-frame vectors, they
should be converted into the global frame values to compute the correspond-
ing driving torque or force at each joint. Letting T} be the 3 x 3 transformation
matrix converting [ frame coordinates to global frame coordinates, then the

global coordinates of sz and 7';‘, are simply given by

FE1 [T o] F
Ty o 0 T 1'5
T 0] o
= {0‘ T:] o

' Rla;; R, e RO (6.15)

Since the conversion process is a matrix premultiplication, the linear relation
with the constant inertial vector a; is maintained in the above expression.
Equation 6.15 gives the inertial force and torque of the Ith link in terms of
the global coordinates. The corresponding driving input at each upstream
joint is computed next. In Figure 6.1 a prismatic joint, 7, is located at the

upstream of link /, then the driving force of 7 to counteract the inertial force
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and torque at link ! is

Fi = s;-F,

= [s] 000]R!a,

' (Rp)a; (Rp)T € RY (6.16)

»
where s, is unit directional vector of joint i. Summation of all inertia force

on ¢ gives the ith joint actuator force as

N
FE = YF

I=1

= Z(RF)IaI

= [0--- 0(RF); ... (Rp)n]a
— RFa; R; € R]O (617)

where N is the number of links including payload and
a=[alal --- al]T ¢ RIN

Notice that since all links located at the upstream of joint i contribute no
inertial effect on ¢, they are excluded from the above force summation. Simi-
larly, in Figure 6.1, joint [ is located at rji above a revolute joint j, the torque

on joint j due to the inertia of link { is

i = S (rpx Fp)+s;7,
= (s;xrj)-F,+s;-7,
= [(s; x r)T (sD)|Rjay

' (Rr)ay; (Rr)T € RY® (6.18)

where s; € R3 is unit directional vector of Joint 5. Notice that scalar triple

product identity a - (b x ¢) = (a x b) - ¢ is used in the above derivation. The



sum of all inertial torque on joint j is

N
T, = ETJ'[

=3

N
= E_(RT)laz

= [0 O(RT)J‘ (RT)N]a
' Rra; RL e R (6.19)

It should be noticed that the above derivations are applicable to both rigid
and lumped-compliant manipulator models. In the lumped complaint ma-
nipulator model, the primary link and joint oscillations are depicted by the
movements of pseudo prismatic or revolute joints which are driven by lumped
springs. By following the lumped model description, joints ¢ and j in Fig-
ure 6.1 could represent either actual or pseudo joints. For actual joints, F;
and 7; are respectively the actuator driving force and torques. For pseudo
joints, F; and 7; are the stored resilient force and torque in lumped springs
located at joint ¢ and j separately, which are F; = —K,;; and 7; = —K;;,
where K; and K; are spring stiffnesses and §; and §; are spring deforma-
tions. Therefore, as shown in Equations 6.17 and 6.19, the inertial dynamics
of a robotic manipulator, rigid or lumped compliant, could be expressed as
a linear function of inertial parameters a. Similar dynamic expressions are
employed by [Sklar, Hudgens, and Tesar, 1990] to perform calibration of rigid

robot inertial parameters.

6.1.2 The Lagrange Method

The first step in the Lagrange method is to find system kinetic and

potential energy expressions in terms of structural inertia. Let K E; denote the
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kinetic energy of link I, then the total kinetic cenergy of an N-link manipulator,
mcluding payload, is
N

KE =Y KE,

1=1
and letting (PE,); denote the gravitational potential of link { and (PE,) be

the potential energy due to structural resilience of ! , then the total potential

energy 1s

PE =3 {(PE,) + (PE.))

=1

Typically, ten constant inertial parameters of link { , which are similar to that
defined in Equation 6.14, will be grouped from the kinetic and potential en-
ergy expressions into a linear form. Since the differentiations in the Lagrange
equation are linear operators, the linear relationship with inertial parameters
remains intact in the final dynamic equations. Before presenting this deriva-
tion, a note about the usage of notation is that although kinetic and potential
energy are scalar physical quantities and independent of the selection of co-
ordinate frame, the following vectors are defined in global frame except those

added with a superscript ! to emphasize I-frame vectors.

According to Figure 6.1,

2KE; = m(P+)? +wTTI'T)Tw

= mP Py 2omP"¢ 4 miTi 4 ST (6.20)

in which T; is the 3 x 3 transformation matrix converting ! frame into global
coordinates, and w € R® is the angular velocity of link . For # = w x r, the
(m+T#) term in the above equation could be written as a dyad matrix form

through the following operations

mrir = mp.r
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= m(wxr)-(wxr)
= m{w-[rx (@ x )]}
= mw-[(rrw —r(r-w)]
= WIm(rTrT - rrT)w

= wTTl[m(rlTrlI - r‘r’T)]Tsz (6.21)

where r is transformed into r! by the relation r = Tjr!, also the orthogonal
property of coordinate transformation matrix is used here, i.e., TFT; = Z, and
T € R3*3 is a unit matrix. Then the moment of inertia term in the kinetic
energy expression could be redefined with respect to the point p in Figure 6.1

instead of the center of mass as

miTF + I TIT w = WwTT[IL + m(r'Tr'I - r'r'T)]TlTw

= wTTII;,T,Tw (6.22)

where

Il = I' 4+ m(rlTrlI - r‘r‘T)

Because the constant matrix I! is symmetric, it could be decomposed into six

matrices
. —Ipx:c Ipxy Ipzz
Ip = Tpys Ipyy Lpy.
hIpz:c Ipzy Ipzz
1 0 0] [0 1 0] [0 0 1]
= 0 00 |L,+|100|Lgy+|[000 I,
| 0 0 0 | 0 0 O | |1 0 0
[0 0 0] [0 0 0] [0 0 0]
+ 010{L,+{001|L,.+|00 0| I..
|0 0 0] [0 1 0] [0 0 1
10
o ZIpiai;Ipi€R3XB (6.23)

=5
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where

[05 ag a7 ag Qg alO] = [Ipzx Ip:vy Ip:z:z Ipyy Ipyz Ipzz]

and I;, i € {5,---,10}, is defined accordingly. By the distributive law of ma-
trix multiplication, the kinetic energy of moment of inertia could be expressed
as a linear sum of the above constant q; elements, or
10
WITLT w = Y (WTTLT w)
i=5

10
= > (" RGTTLIT rGi§) a;

=5

f }%(qTI;q') a; (6.24)

i=5
In the above expressions, angular velocity w is replaced by the joint speed ¢
and rotational influence coefficient rG) through the relation w = rRGg, where
g = [6T BT]T € Rre*7s, and 6 is an ny vector of actual joint displacements and
B is an ng vector of modeled pseudo joint variables. Similar replacements will
be used in the following derivations so that the first and second order influ-
ence coefficients could be employed to formulate the final dynamic equations.

Notice that the above It withi =5 ... , 10, are symmetric matrices.

Now for the mPT# term in the 2K E; expression given by Equa-
tion 6.20,

mP'f = mP.(wxr)
= mP.|wx(r,% + ryg +1,2))
= —P.(&x w)(mr,) — P (g x w)(mry)

~ P (2 x w)(mr,) (6.25)

where 2, §, and % are respectively z, y, and z unit directional vectors of [

frame coordinates. By the influence coefficient definitions w = rG1¢ and
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P = 1G,4, the above equation becomes

omPT¢ = mPF+ (mP )T
_ S (=[2G, (5 x rG) —[1G,-(5 x G)IT}i(mr,)
S=Z,Y,2 .
4
o ST @ (6.26)
1=2

with [a; a3 a4] = [mry mry, mr.], and I3, I3, and I} are symmetric matrices.
In the above equation, since grG)is a 3 X (ng + ng) matrix, the cross product
3 x pGy means cross product of § with respect to each R® column of grG,

which is defined in the followings. Set ¢ = [¢; 4 - Gnotns)’ and rGI =

[c1ca -+ Cnony), Where ¢; € R3. i€ {1,---,ng+ng}, is column vector of rGI.
then
ng+ng
rRGig= ) cdq; (6.27)
=1
and
ng+tng
§x(rGY) = Y (3xey
=1
= [(6xe1)(Bxes) e (8% Cngang)l g
e 3x rRGi (6.28)

Finally, by defining @, = m, the linear term of a; in 2K E,;, Equa-
tion 6.20, is simply
mP P = m({T 1G; rGpi)
G a (6.29)
and It = (I7)7. A collection of the above expressions gives

10
2KE, = Z(Q'TI:q')ae

=1

= ("L L) - (@ Hedha

= ¢TIl ay (6.30)
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where [¢TI*§]T € R0 with (¢7I*q) as the jth element. By stacking up the
constant inertial parameters of all links into a, column vector a, the total sum

of N-link kinetic energy could be written as a linear equation of a as
2KE = [l I [ 5l - (7T dlv] a (6.31)
with
a=[a] al --- al]T € RIN
A linear relation of a could also be found for gravitational potential energy
expressions. Since among the constant parameters only m and mr show up
in gravity force, the derivation of the Ith link gravitational potential energy
is straightforward as
(PE) = mg-(P+r)

= (G- P)m+(5-mr)

= [G-P)(G-2)(5-9) (3 Dllar a a3 a7

= §-P)(G-2)(§-9)(G-2)00 - 0]a

= UPEN(PE) - (PEW) oy

= [PE) ay (6.32)

where § € R? is vector of gravitational acceleration, and [PEIT € R, with

(PE;) as the jth element, is defined for notational convenience. Therefore,

PE = [[PE,]] [PE,]Q v [Pg,]N] a+ g:(PE,); (633)
=1

Since the time derivative and partial differential in the Lagrange equation
d OKE OKE JPE v
—(==) - == L E .34
&5 3 T o [o] (6.34)
are linear operators and a is a constant vector, the linear form of a is main-

tained in the final dynamic equations. In the above equation, v is an ng
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vector of generalized actuator force. Before presenting details of the dynamie
cquations, the resilient potential energy term, YN (PE,), in the Lagrange

equation is moved to the right-hand side and placed under the vector of gen-

[o]-a ()=

where K € Rm*"s is a diagonal stiffness matrix and 8 € R™ 1s vector

eralized force as

of compliant deformations. This arrangement makes the dynamic equations

exactly linear in a in the following Lagrange equation
d 0KE, OKE 3 (<& v
- - —_— E = - .
JOKE) B D (SeEn)=| gs]  03)

Recalling that in the previous chapters the inertial dynamics with well-known

system inertia are expressed as

rae[ 5] k)

similar notation will be used here. In the above derivations, %ijI,-“q and PE;
are respectively the kinetic and gravitational potential energy associated with
a unit inertial parameter a; of a given link, they are deliberately formulated
so that every I? is symmetric, hence the dynamic equation associated with

a; could have a familiar form of

o +[(f1),] d (34 TI*q)) A(34"Ird) | OPE;

(£2): dt( e + 34 (6.36)

with

[ (fl) ] _It 6( TI*Q) + 67)81 (637)

(f2)i 0q dq

And for the whole manipulator

A AR
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which is further defined as

Zia =1 (6.39)

where U’ = [vT (- K8)T]7, and

7, = Z5(q,4,§) = [ ([;g.;_ [ 8;3' D } € R(no+ns)x10N
¢ !

where the subscript ! denotes the inertial dynamics of link /, and 7 means the
dynamics of a unit parameter a; of link l, in which ¢ = 1,--- 10. Since the
final inertial dynamics are composed by elements I}, I':‘, and %(%QTI:(}), they
are tabulated in Table 6.1 for ; = 1,2,---,10. Apparently, for given Z} and
U’, a could be estimated from the linear equation Zga = U’. But Z} contains
Joint acceleration ¢, and general manipulator sensor only provides position g
and velocity ¢ readings, therefore, the inertial dynamics are integrated with

respect to time to remove dependence on acceleration signals. Because inte-

gral is a linear operator, the linear relation of a is intact after integration. By

defining Zy = [ Z{dt and U = [ U ‘dt, the final linear equation is
Zoa=U (6.40)

and Zo = Zo(g, ). This equation will be used to derive an estimation algo-
rithm for uncertain a in the next section. The above Z; could be derived

term by term from the following integration equation

/(I;ij+ [ EB D,dt = (I}q), — /(I}“d)zdt + / [ EB Ldt (6.41)

with 7 € {1,2,---,10} and 7 € {1,2,---, N}. Notice that Ir = I*(q,q) is in-
dependent of acceleration. As an example, details of the the above dynamic

elements are listed in Table 6.1 for link . A part of Table 6.1 results are used

to construct (f1); and (f;); defined by Equation 6.37.
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(¢TI} q)
I;—>4

F*
IZ—o4

Ag" I3 49)
dq

*.
IS—»IO

r*
I5—010

Oq

TG.p
RCI

Table 6.1

my TGZ TGg
my TG,:,F TGZ' + my TGZ TG'{

¢T 7HY 1G4+ ¢" 1G; rHyd

(s x rGp) —{ 1G] - (s x RGp)}; s=12,9
(s x rG,)— 1G} - ($ x RG))

— 7GT - (s x rG,)

+{~ 1GT - (s x rG,)— 7GT - (3 x RGp)

— 7GT (s x RG,)}"

~¢"{ rH} - (s x rRG))}d

= ¢"{ 1G] - (=(s x rGi) x RG))}4

—¢"{ 7G} - (s x rHi)}4

+{—¢"{ rH - (s x rG1)}{

—¢T{ G} - (—(s x rG)) x RG)}

(s x rH)}}

rRGTTLIT rGi

- §"{ G}

RGTTLTT rGi+ rGFTTLIT Gy

+ RG{ﬂIpiT}T rGi + rRGTTLTT rG)

§T( RHYTILTT rGig + ¢ RGT (VTN rGig
+¢" RGTTL(VTT) Gii +¢" RGI T ( RHI)
7Hyq

rHiq

’
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T, = (&2
T, = [(wx &) (wx §) (wx 2)]
VI = [(=2 x aG) (~§ x rG)) (=% x rG)]

(end of Table 6.1)

6.2 The Least Square Estimation Method for Constant
Linear Parameters

In linear equation Zoa = U, with Z, ¢ Riretng)x10N 5 RION
and U € R+ for given Zy and U , existence of a unique solution a relies
on the relation between U and the column space of matrix Zo. U isin
the space spanned by the column vectors of Zy, then at least one a satisfies
the equation. In contrast, if U is not entirely inside the column space of Z,
then there is no solution to the equation. However, Z; = Zo(q, ¢) which is a
nonlinear function of position and velocities, hence its column space changing
not only with position but also with speed of motion. Therefore identifying
the relation between U and Z, directly is not a proper way of solving a.
Despite the difficulty of obtaining an exact a, an alternative way is to find an
estimate & that has minimal estimation error defined as l|Zoa — Ul|, which
is generally known as the least square method. The algorithms of the least
square estimation method could be found in [Astrom and Wittenmark, 1989]
and [Li and Slotine, 1987]. Since Z, is a nonlinear function varying with
position and velocity and a is a constant vector, the time history of Z, is

included in the optimization process by defining a cost function as
t
T(a(0) = [ et 25(s)a(t) — U(s)?ds (6.42)
0

in which e7?(t=%) is an exponential forgetting factor with ¢ > 0 to weight

higher on current error than far past one. To find an optimal &, the gradient



of cost function J(a) with respect to a is set to zero, which produces
t t
/ e=7t=9) 7T (5) Zo(s)dsa(t) = / e=ot=9) 2T (s)U(s)ds (6.43)
0 0

or
R1'a=0

with R-! € RIONX10N and O € ROV defined respectively as
t ’
R /0 e~ (t=9) 2T (5) Zo(s)ds (6.44)

t
o i e=o(t=) ZT(s)U(s)ds (6.45)

since ZT Zy is a positive semidefinite matrix, ™' could become positive def-
inite and invertible after integration. This condition is defined as persistent
ezcitation. If R exists, then

4= RO (6.46)

However, the convolution integrals in R™! and O require storage of all past
data, and in addition, on-line inversion is required for R, therefore the above
approach is ineffective in computing 4. An alternative and efficient way of
computing a is to integrate a and R recursively by

t+ At
Alt+ At = at)+ /t Adt

Rt+At) = R(t)+ /t T Rt
where R could be obtained from R~! and its time derivative (R:'l). For
persistently exciting system, R™* > 0 so RR-! = I whose time differentiation
gives RR™ + R(R-') =0, hence R = ~R(R-YH)R.
Since in Equation 6.44, both integrand and integral limits are func-

tions of present time ¢, Leibnitz’ rule is applied to find (RLI), which states



that for a given integration defined as

. :[bt o(s. )ds

1(t)

its time derivative is

Ty [ Og(s, )
(77 = A(r) ot

0.0 yiay, n™)

Since in our case b(t) = t, a(t) = 0 and ¢(s,t) = ¢ =0 ZL(5)Z4(s),

- _ t 096(\ f)
(B = g0+ [ Sl
= Z4(t)2(t) ~oR™" (6.47)
which gives
R(t) = oR(t) — R(1)ZX(t) Zo(t)R(1) (6.48)
and similarly
O =2 tUt) — 00 (6.49)

From Equation 6.46, & == RO which has a time derivative
1 s

= RO + RO

w>-

= (0R-RZJZ,R)O + R(ZJU — 00)
= RZI(U - ZyRO)
RZI(U - Zya)

Il

= —RZTe (G.50)
where ¢ is the estimation crror defined as

{ef "
£ = Zua - L[

= Zy(a-a) (6.51)
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Once Zy and U are available in estimation process, R and a are computed
from Equations 6.48 and 6.50 and then integrated over a time step to update
R and 4. One comment on the above update algorithm is about the initial
value R(0). At t = 0, the upper integral limit of R™! in Equation 6.44 is
zero, which means that R~*(0) = 0 and R(0) = oo. It is improper to use this
initial value to estimate a, so a nonzero but small value is practically chosen
to be the initial value of R™!, therefore, R(0) is large but finite. Generally, a
diagonal matrix is chosen to be R=*(0). This replacement of initial value has
minor effect on the precision of R~(t) value in the long run, which can be

shown by an analytic integration of (R;l) in Equation 6.47 which produces
t
RY(t) = e "*R7(0) + [) e~ (=9 2T (8)Zo(s)ds (6.52)

the above equation shows that R~!(0) decays exponentially with time and

has almost no effect on R™! after a large t.

Since the least square method finds an estimate minimizing the cost
function J, it is important to further examine the convergence of the estimate
to an exact value. First, let & = (a—a) be the estimate error, so for a constant
a, Ad=a= RZZTe by Equation 6.50. Then, a Lyapunov type function is
defined as

V=alTR'a (6.53)

where R-! is positive definite for a persistently exciting system, hence V > 0,

¥ & # 0. It can be shown from Equations 6.47 and 6.51 that

Vv = 2a"R'a+al(RV)a
= —2aTRY(RZTe)+aT(—oR™ + 2{ Z)a

= —ele -0V (6.54)
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since ¢ > 0 and V > 0 for all a # 0, then V < 0,V a # 0, which means
that the estimation is stable and convergent. Another way of investigating

convergence is by direct integration of & defined as

a=a& = —RZTc

= —RZIZsa (6.55)
FI‘OIl:l Equation 6.47,
Z5()26(t) = (R-') + oR™!
a substitution of the above expression into Equation 6.55 produces
a=-R((R")+oR")a
which has an equivalent form of
R'a+(RVa+oR'a=0

After multiplying both sides by e’ and using time differentiation, the above
equation becomes

zlf‘%(ffftzz—lgl) =0

Let a(0) denote the initial estimate error, then
e’*R7'(t)a(t) = R1(0)a(0)

and

a(t) = e""' R(t)R'(0)a(0)

Recalling that a = (a — a),

a=a+a=a+e ""R(t)R7(0)a(0) (6.56)
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for finite R~1(0) and 4(0), & — a as t — 0o, therefore, for persistently exciting
R~! aapproaches to a as t increases. Hence, convergence of estimate to exact

solution is ensured provided that the system is persistently exciting.

Obviously, an essential requirement of the least square method is the
condition of persistent excitation, or R-! > 0. From Equation 6.44, far past
ZI Zo terms decay exponentially with elapsed time, so near time ZI Z, terms
must have full rank to maintain a positive definite R~!. This means that the
column vectors of near time ZI Z, must span the space that a resides. This
could be verified by a simple examination of Equation 6.44 which is rewritten

as
11 t
R = / e=7=9) ZT(5)Zo(s)ds + / o= ZT()Zo(s)ds  (6.57)
0 ty

with 0 < t; < t. If R™! stops excitation after t;, the first integral becomes
zero quickly as t increases, but the second term is positive semidefinite, so the
inverse of R~! is not ensured. In other words, in order to have an invertible
R-!, the second integral must maintain positive definiteness and hence be

persistently exciting.

Notice that with persistent excitation, convergence of estimate also
can be shown for the case of ¢ = 0, i.e., equal weight on all data in Equa-
tions 6.44 and 6.45. For a persistently exciting system, R~! grows continu-
ously with time while its inversion R reduces in magnitude and eventually

becomes zero. From Equation 6.56, with ¢ = 0,
a=a+ R(t)R™'(0)a(0) (6.58)

for finite R~1(0) and a(0), a —» aas R — 0. But according to Equation 6.56,

due to exponential decay, an estimate with exponential forgetting converges
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faster than one without exponential forgetting. For estimation without expo-
nential forgetting, the above recursive formula, Equations 6.48 and 6.50, are

legitimate after replacing o with zero.

Application of the least square method requires well-known Zy and
U. Generally, in an off-line calibration of manipulator inertia, simple com-
mands like sinusoidal or trapezoidal functions could be used to create ma-
nipulator motion, from which position and velocity readouts are collected to
construct Zo and U. However, some inertia might not be activated during a
given motion. For example, if one particular link has no rotational movement,
its moment of inertia is not excited. If this happens, the system is not persis-
tently excited and estimate may not converge to the exact value. Therefore,
more tests involving different manipulator configurations are useful to assure
the accuracy of estimation. Once structural inertia are calibrated, they are
treated as known parameters, which makes payload inertia the major un-
certainty in robot controller. In the next section, an adaptive controller for
compliant manipulators is introduced, which conducts on-line estimation of
uncertain payload and uses estimates to form control commands for trajectory

tracking,.

6.3 Adaptive Control Algorithm for Compliant Manip-
ulators with Payload Uncertainty

Before presenting the adaptive control algorithm, compliant manip-
ulator dynamics are reviewed briefly. In the followings, manipulator inertial

parameters are assumed well-known and payload is the only uncertainty to

the controller. For a compliant manipulator, the dynamic equations, includ-
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ing payload, are derived in Chapter 3 as

A ST 6 1.0 » .
ER4IH R T A R

where Aj € Rmexme ¥ € R"*™, and A; € R8*™ are elements of the
generalized inertial matrix composed of nonlinear functions of actual joint
displacements, § € R", and vibratory modal amplitudes, 8 € R"*. Also
f! € R™ and f, € R" are coupling terms containing Coriolis, centrifugal, and
gravitational forces, which are functions of 6, 8, B, and 3. Note that actuator
dynamics are excluded from the above expression. Let subscript k denote the
known system parameter and subscript u represent the uncertain payload
dynamic parameter, then the generalized inertial matrix in Equation 6.59

could be divided into
AL ST) (A, BT A, BT
[2 AQ]‘[E MY A, (6:60)
and [f!T fT]T is composed of two parts as

Al_1| A fi
[ﬁ]—[f:}ﬁ[fz]u (6.61)

For uncertain payload, section 6.1 shows that a linear expression of payload

inertial dynamics are given by
e oo (i | G0} ] Ay .
Zia = I'q + a;te{l,---,10} (6.62)
(f2)s
where a € R!° contains payload constant inertial parameters
[a1 a2 a3 a4 as ag ar ag ag ar] = [m mr, mry mr, Lzx Doy Tpze Loy Lpys L,..]

and ¢ = [6T BT]T. Since g is independent of a, Zja has an equivalent form of

’ T 0 '
z;,az[/}zl ?\z]u[g]Jr[{’;L (6.63)
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in which

[é‘ i:] =§:I;a,- (6.64)
and -

A=zl 565

Since it is preferable to have a complete system dynamic description in con-
troller design, actuator dynamics are added to the above equations, which

are defined in Chapter 3 as
JO+ D+ K.6+0v=u
in which the generalized actuator force v is defined in Equation 6.59 as
’ T é ! ! T é /
v=[A] &), g |t e+ AL 2T, g |t (6.66)
Substituting the above v into actuator dynamics and defining

(A = (A + 7

(fe=(fr+ D8+ K0
(A1) = (A)).

(fl)u = (fll)u

the total system dynamics become
A] ET 0 f1 (74
4 = 6.6
ER4IH B I B
Ay ZT ] [ A ET A XT
TR e

A
] + [ ﬁ } (6.69)
k u

with
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In the following control law development, uncertain payload inertial param-
eters will be estimated on-line. For the purpose of distinction, a hat, (%),
will be used to denote estimate of an uncertain element, and tilde, (), will
represent the error of estimate. For example, a is the estimate of a and
a = (A — a). Similarly, for the uncertain term in Equation 6.64 the estimate

and estimation error are expressed respectively as

A iT} LA
- - = I;' a; 6.70
[ T A i=1 ( )

and

—
M 2

ST 10
. = S I (a4 —a
A2]u MACEES

10
= Y Ita
=1
and so forth.

The adaptive controller for dynamic Equation 6.67 will be con-
structed from two considerations. First, it is desirable to assign each nominal
and vibratory mode a specially designed acceleration composed by feedback
of position and velocity values and feedforward of desired position, velocity,
and acceleration. Ideally, this assignment will produce an error-driven dy-
namic system which has an exponential decay response after proper selection
of feedforward and feedback gains. If accomplished, nominal displacement
would converge to the desired trajectory and structural oscillation would be
eliminated simultaneously. However, the system has ng 4+ ng degrees of free-
dom but only has ny actuator inputs. The acceleration assignment from
actuator inputs is a mapping from R" space to Rnretns space, and finding
exact inputs for the designed accelerations is equivalent to solving an overde-
termined problem, therefore, unless the assigned acceleration is in the range

of mapping, no solution or actuator inputs could generate the ideal result.
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; Since a direct assignment of designed acceleration is difficult due to
dimensional mismatch, the Lyapunov’s second method is applied to assist con-
troller design. The merit of the method, besides simplicity, is that it defines
stability criteria in R! space, which will eventually transfer the control design
from an overdetermined to a redundant problem. In applying the method, a
quadratic form of error state is chosen as the Lyapunov function which has
a positive scalar value for all nonzero error states. The actuator inputs are
structured so that the Lyapunov function has negative time derivative as long
as error state remains nonzero. Consequently, error state approaches to zero
asymptotically, and convergence of nominal and vibratory displacements to

the desired states and estimates to actual values are ensured.

According to the first consideration, for desired trajectories 6, and

Br, the designed accelerations are defined as

60 = 6, — K,p(8—6,) — Kyp(6 — 8,)
Bd = Er - Kpﬁ(ﬂ - ,Br) = Klﬁ(ﬂ - ﬂr) (671)

where K9, K5 € RreXne and Ky, K15 € R*%ns are diagonal constant gain

matrices. Let e € R™ and eg € R™ be the error states defined as
es = (é—é,)+Kp9(6—0,)+1{m/(9—0,)dt (6.72)

s =(B—B)+Ks(B—B,) + Kpp [8~ 8.yt (6.73)

then é = § — 6, and €g = ﬂ - éd. Equations 6.72 and 6.73 are two simple
ordinary differential equations with stable eigenvalues after proper selection
of gain matrices. For zero e, and ep, the differential equations are homoge-
neous, and transient response of (0 —6,) and (B — B,) decay exponentially.

Furthermore, by taking the Laplace transform of the above equations and



o
=
4]

using the final-value theorem, it can be shown that eg — 0 = 6 — 6, and
eg — 0= f — B.. This implies that if nominal and vibratory accelerations
obtain the designed values, § will track the desired trajectory 6, and vibra-
tions will be suppressed by setting 8, = B, = B, = 0. Since the designed
acceleration is a vector in R™*"s and the control vector is in R™ space, it 1s
generally difficult to create the desired assignment, therefore, the Lyapunov’s
second method is employed to assist controller design. Since exact payload is
uncertain, estimation of payload parameters will be included as part of the

design criteria.

First, a dynamic term defined as
Ay BT 6] fi
ERAIEANY 079
is subtracted from both sides of Equation 6.67, which results in
A ZT || ée u | _[A 2T éd A
p Az ég '—Kﬂ | by A‘Z ﬂd f2

- [ke] [ RLLR]- 2]
- —K'B LZ A2 k ﬂd f2 k

i

A BT [ b A
B RLEEL e
then by adding and subtracting an estimated term
][44 ~
A bl I A 6.76
[zAzuﬂd_ il (6.76)

to the right-hand side of Equation 6.75, system dynamic equations become
Ay ST [e]l [ w 1 M ST (6] [ A
E Az ég - —K,B 2 A2 k \_ ﬂd f2 k
SqIREN
Az | | Ba | f2 ],

w18 [4]
+{ Az]u[ﬁd]+_fzu (©7D

—

M2t M
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The input u is chosen in a composite structure as

U= up + up (6.78)

where u, is defined as

up = [A; T7), [ Z;‘ } + (f)k + [Ay £7), [ gz J + (A)u (6.79)

By introducing two notations Zy and S as

e [k 7] 2 00)
- Z(I [gi}Jr[glii})&f (6.80)

éd < éd 2
,éd } + (f2)k + [E A2]u [ ,éd :, + (f2)u (6-81)

with Z; € R(ne+ns)x10 and g, ¢ Rm#, then Equation 6.77 is reduced to

[’; i:”:g}=[_K;2_sl]+zla (6.82)

To find a u; stabilizing the system in Equation 6.82 and eliminating payload

and

Sy €T Al [

estimate error a, a Lyapunov function is selected below. Since the inertial
matrix in Equation 6.68 is positive definite, the selected Lyapunov function

18

1 .[A T 1p .
V—ipe [2 AZ]e+-2—a1’2 a (6.83)
where e = [e] e]T € R™*" and p is a positive scalar constant whose

function is to assist payload estimation as shown later. The purpose of adding
the quadratic term of a in V is to include payload estimation in controller
design. A similar Lyapunov function is proposed by [Slotine and Li, 1988] to
control rigid robotic manipulators. In the above equation, R™! is defined in

the last section as

R(t) = /Ot e‘”("’)Zg(s)Zo(s)ds
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which is a positive definite matrix for a persistently exciting system. How-
ever, unlike the last section derivations, now the only uncertainty is payload
instead of the whole structural inertia, therefore, Z, is redefined. From Equa-

tions 6.63, 6.67, 6.68, and 6.69
. [ A 2T é f
z = (3012
- [ 5l-[5 R
- | -Kk8 T A, | B £,
o (6.84)

then Zo = [ Z4dt and U = [ U'dt. The integration is to remove the require-
ment of acceleration signal in Zj. From the above relations, an estimate error

¢ is defined as

g = Zoa -U
= Zo(é — a)
= Zoa ' (6.85)

From Equation 6.83, the time derivative of V' is

- Ay BT L Ay XT TRV DU NI
V= peT[ El A ]e—l— §peT[ 21 A, ]e+aTR 'a+ §aT(R‘1)a (6.86)

where the derivative of the generalized inertial matrix could be decomposed

into known and uncertain parts as

Ao ST]_ A 2] L [A ST
[z A:,,]—{z TS A, (6:87)
and recalling that
[ A ZT ) 10 .
5 A T2
L Ju =1
then for constant a
(A 27 3 I 6.88
. X = * a; .
| 2 A2 1. l—zl 3 ( )
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According to the above result, the associated quadratic term in V could be
replaced by a compact notation Z,a defined as
A, BT
Za ¥ eT| 1 < e
’ Y A,
10

= Y (eTI’e)a, (6.89)

=1

2 2 T
Za ¥ eT[’El z ]
Y A

10
= D (e'Ife)q (6.90)
i=1

g +T
~  def A
Zaa = eT[J gJe
u

Y A
10 R
= ) (eTIre)a; (6.91)
=1
and
Z,a = Z,4 — Z,a (6.92)

where Z; € R!°. Notice that in the above definitions a is replaced by a and
a directly after time derivative, which means that no 4 or i term appears
in the above operations, so hat and tilde are placed on the top of A;, ¥
and A, to denote this relation. After substituting the above expressions into

Equation 6.86, V becomes
: T U 1[ A, 2T 1 /?\1 f]T
v {[—Kﬂ—&]*é[ £ A L”i[ > AJ }
+pe’Za+aTR A+ %éT(R'—l )a — %pzzé (6.93)
Further simplification of V expression is possible by defining u, as

1. . 1.2 =T _
Uz = uz — §[A, 2T)ie - 5[Al ¥ e (6.94)
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and introducing a new notation S, defined as

1.. . 1.¢ =
52 = §[E Az]ke + ?‘2‘[2 Az]ue (695)
also using the last section derivations that (R-'l) = —oR™ + 2¥Z,, and

Zoa = . By combining these results, V becomes

1

Vo= pe’| _pg i s, +4&7(R™a - 3027 + pZ{e)
1 1
— o R+ 5eTe (6.96)

Since the goal is to have a negative V for all nonzero e and a, a is selected

to create a relation that
.1
R'a-— §ng” + pZle = —2Z1¢ (6.97)
which means that parameter updating formula is
: 1
a= R(ing — pZfe — 2%¢) (6.98)
Additionally, by an earlier definition e7 = aTZT, V results in
V = peTl us L, Liatpa (6.99)
—KB—-51+5: 2 2 ’

where the last two terms in the right-hand side are in negative quadratic
form, therefore, u3 is chosen to produce a negative first term. Since the first

term is a scalar value and could be expanded as

peT { _Kp _u?g'l + S, ] = p{egug + eg(_l(ﬂ -5+ 52)} (6.100)

then us could be chosen so that

eTus +es(—KB— 51+ 52) = —%eTe (6.101)
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with a; a positive constant, therefore,
y T 1 T 1 =T -1
V= —aje e~ ¢ €-50a R™a (6.102)

In the above expression, V < 0, Ve and a # 0, which means that the designed
controller will make [e] eF]T — 0, or implicitly § — 6, and 8 — B, and also

~

a— a.

Since Equation 6.101 is a scalar function of ng-vector us, finding a
u3 satisfying the equation is solving a redundancy problem, hence more than
one solution exists for uj. Therefore, additional criteria could be enforced in
the selection process, Here, u3 is chosen to have a minimum Euclidean norm

value ||u3|. By defining
v =el(~KB - S + S3) + %eTe (6.103)
Equation 6.101 could be rewritten as
elus + v, =0 (6.104)

which has a minimum norm solution

us = -l e, (6.105)

for ey # 0. Notice from Equation 6.99 that when €¢ = 0, u3 has no effect on V
and a negative V is not ensured. To resolve this problem, the Lyapunov equa-
tion could be modified by adding a positive term sudus into Equation 6.83

which becomes

Vi=gpe [2 As

1 1

then following the above derivations,

. o1 1 . .
V = pelus + peg(—K,B =81+ 82) +ulis - EET&‘ — EaaTR‘la (6.107)




in which 43 will be chosen to satisfy the equation
pe{u;; + peg(—Kﬂ - 51+ 52)+ ug'zlg = —a;,ugug —ajele (6.108)

so that

. 1 1
V= —aele — aqulusz - EeTs -~ §aaTR-la (6.109)

where a; > 0. Again minimum ||¢3]] criterion is applied to assist selection of

u3. By defining
Y2 = pesus + peg(——Kﬂ — 81+ S2) + aufus + are’e (6.110)

the solution us is

_
us]?

provided that uz # 0. In the modified Lyapunov function, V < 0 for all

Uz = (6.111)
e and a # 0 is ensured for us # 0. Since us is the control input, it could
be manipulated directly to have a nonzero value during control process. Or
from Equation 6.111, since 43 is proportional to v, defined in Equation 6.110,
by choosing very small p, o, and ay, uz varies slowly and could have a
nonzero value. Since both actions require adjusting uz at the beginning and
end of motion which might create disturbance to the system especially when
nominal joints are at steady state, the first controller is preferable. Notice
that although the first controller can not guarantee a negative V when e5 = 0,
yet at es = 0 the nominal trajectory 6 has reached steady state 6., and
estimation should converge to the exact value in the early stage of control
for a persistently exciting system, therefore, control could be ceased, which

allows structural damping to dissipate residual oscillation naturally.

In Equation 6.98, the estimate update equation is defined as

.1
a=R(;pZ] - pZie - Zge)
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and in the least square method the update equation defined in Equation 6.50
is

= —RZle

for a constant a. By comparing both results, it is apparent that with a
very small p, the estimation derived by the Lyapunov method will act like a
least square result which is designed purely for estimation. Another advan-
tage of using small p to improve estimation performance can be seen from

Equation 6.99 which states that

r_ T u3 _lT_l Tp-1x
V = pe [—KB—SI—{-S;, 5€ € 2aaR a

in the case that ey = 0 and ep # 0 the above equation becomes

1
= pes(~KB— S1 + ;) — —e £ — §a.-:lTR-1~ (6.112)

and V > 0 occurs at
T 1 ¢ T N
pes(—KpB — S+ S;) > 3¢ e+§aa R™a

thence convergence of e; and i are not ensured. Recalling that € = Z,a, the

above inequality could be rewritten as
1
peg(—Kﬂ - Sl + Sz) Z §~T(ZgZo + GR_I)&

which could be interpreted geometrically as a ball of a bounded by pel (-K3—
S1+S52). So when & enters the ball defined by p, convergence of estimation is
not justified because of V > 0. But a small p will reduce the size of unjustified
region and result in better estimation. Hence, a small p will be adopted in
the later case studies. The adaptive control system block diagram is shown

in Figure 6.2.
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Figure 6.2 Adaptive Control Block Diagram
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6.4 Numerical Case Studics: Case 1

Verification of the designed adaptive controller is conducted nuier-
> . . . . .
ically on the motion control of two flexible manipulators carrying uncertain
payload. The first model is a thrce DOF manipulator modeled with three
lumped link compliances as depicted in Figure 6.3, whose system parameters

are listed in following tables.

Table 6.2 3-Link Model Kinematic Paranoters
Link Length (m) | Center of Mass (m) Offset
(x,y, z) (x,y,2) Angle (deg)
Link 1 (0,0, 1) (0, 0, -0.5) ‘ 0
Link 2 (1.2, 0, 0) (0.5, 0, 0) 90
Link 3 (1.4, 0, 0) (0.5, 0, 0) 0
Table 6.3 3-Link Model Inertial Parameters
Mass | Moment of Inertia ( kg.m?)
(kg) (Ips, Iwa 22)
Link 1| 300 (0, 0, 30)
Link 2 | 680 (6, 53, 44)
Link 3| 450 (50, 8, 50)
Table 6.4 3-Link Model Actuator Parameters
Joint 1 | Joint 2 | Joint 3
Incrtia (1073 - kg - m?) 4.2 21 2.1
Damping (N - m/(rad/s)) 0.4 0.4 0.3
Resistance (ohm) 0.8 0.8 0.8
Torque Constant (volt/(rad/s)) 20 20 14
Gear ratio 100 100 100
Back emf Constant (N - m/amp) | 0.5 0.5 | 04

and the exact payload and initial cstimate are

Table 6.5 Actual Payload parameters and Initial Estimates
m | mry mry |\ mr, | Loy | Ly | Ly, Ly, | 1L L.,

ai—10 90| 9 9 9 10 ) S 10 10
di—10(t =0) | 0 0 0 0 0 0 0 0

of oy
&N
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The stiffness matrix is K = diag[(4000000)3] in N/m, where (-), denotes
n repeated diagonal element. The simulation procedure is itemized in the

following steps.

6.4.1 Step 1: Selection of Nominal Reference Trajectories

The reference trajectory selected for each nominal joint is similar to
the fifth order polynomial function used in the last chapter, which is repeated
below

8.(t,t;) = A8f(t,ts)+ 6,0

45 # 3 .

flt,ty) = Gg - 152? + IOE (6.113)
where t; is the traveling time of reference joint displacemeﬁt, and f(t,t;)1sa
normalized polynomial designed with zero velocity and acceleration at ¢ = 0
and ¢t = t; to avoid shocks that might cause structural resonance. In the
above equation, A#f represents the reference joint displacement, and 6,9 is the
starting point. In the simulation, an initial positional error is added to check
the tracking performance, that is, the actual joint will start from a point

denoted by 6, that is different from the reference initial 8,o. The positional

parameters used in this example are tabulated in the next table.

Table 6.6 3-Link Model Trajectory Parameters

tf(sec) AG(deg) 9,.0 00 00 - 0,-0
Joint 1 10 60 016 6
joint 2 10 70 0|6 6
Joint 3 10 50 0 {6 6

6.4.2 Step 2: Selection of Designed Acceleration
From Equation 6.71, the designed accelerations are defined as

0, = 0, — K,(8—6,)— Krs(0—9,)
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Figure 6.3 Three-Link Robot Modeled with Three Link
Compliances
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Bi = B —K5(B-B)— Kis(B - B,)

in which 6, is the desired trajectory given in the last step, and 6, and 6,
come from consecutive time derivatives of Equation 6.113. In the designed
vibratory mode acceleration, the desired vibratory mode value 83, and its time
derivatives, 8, and f3,, are set to zero for oscillation elimination. Therefore,
the diagonal gain matrices Kp9, K, K,p, and Kz, which will assign stable
poles to Equations 6.72 and 6.73, need to be defined. The poles chosen here
are (-3, -4) for each nominal motion and (-1, -2) for every vibratory mode,
so the corresponding gain matrices are K,y = diag|(7)s], K1 = diag[(12)s],
K5 = diag((3)s], and K5 = diag[(2)s]. With the above parameters, the error

states ey and eg are evaluated from Equations 6.72 and 6.73 which are
eo = (0—6,)+ K,o(8 — 6,) + Ko f(a —9,)dt

eo = (8= B)+ Kpa(B = B) + Kuo [(8 - B.)dt

where 6 is a R™ vector of nominal joint displacements and g is a R"# vector

of vibratory mode amplitudes.

6.4.3 Step 3: Construction of Control Input

The control input u is the conglomerate of Equations 6.78, 6.79,
6.94, and 6.105 as cited below

u = uy+ug
r [ 6 o a7y [ b :
uy = [Si A & |+ + B A 5 L+ (A
Ba Ba
1. T 1.2 2T
uz = us*‘z’[zrl\ lxe — 5[21 A e
Uz = ——3—1—69
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where 7, is defined in Equation 6.103 in which a; = pis used in the simulation.
In the above computation of uy, a safeguard is added to avoid dividing by
zero, that is, when the denominator el ¢s reaches a predefined range close to
z'ero, u3 is set to zero. This precaution is to prevent numerical errors but
might affect the resultant V value which according to the Lyapunov’s second
method needs to be negative to guarantee the convergence of both controlled
motion and payload estimation. Yet, since e; — 0 means nominal motion
approaches desired state, and the convergence of parameter estimation, which
is approximate to the result of least square method after choosing a small
p, relies primarily on the condition of persistent excitation. Therefore, the
major impact of setting uz to zero is on vibration elimination. However, this
situation generally occurs at the end of nominal motion, hence the residual
oscillation could be left to be dissipated passively by structural damping. A
modification of the above approach is updating u3 by Equation 6.111, which
could have a nonzero divisor by resetting us, but this will create a disturbance
on nominal motion, therefore, it is not used in simulations. After constructing
control input u, motion response is found numerically from system dynamics

defined in Equation 6.67.

6.4.4 Step 4: Update of Parameter Estimation
For constant payload inertia a, & = & where & is given by Equa-
tion 6.98, then the update equation of estimate a is
: 1
&= R(;p2] - p2le - z8e)

in which Z; is defined in Equation 6.89, Z; is introduced in Equation 6.80,
Zo is the integral of Z{ shown in Equation 6.84, and ¢ is presented in Equa-
tion 6.85 where U is the integral of U’ defined in Equation 6.84. According
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to the previous discussion, since a smaller p produces better estimate con-
vergence, p = 0.001 is chosen in simulation. Additionally, in the simulation
equal weight is placed on all data used in constructing R1, ie., no exponen-
tial forgetting in estimation is introduced (o = 0), then from Equation 6.48,
R is updated by

R=-RZTZ,R

The reason of choosing o = 0 is that if system ceases excitation during simula-
tion, according to Equation 6.57, a nonzero ¢ will turn R~ ! into a semidefinite
matrix quickly and hence cause R to increase drastically. Eventually, a sin-
gular R~! makes R go to infinity and destroys the estimation process. In
general practice, estimation is terminated once persistent excitation stops, so
an exponential forgetting factor could be employed to speed up convergence,
but that is not implemented in our case studies in order to observe the kine-
matic effect on payload excitation. Therefore, ¢ = 0 is used here to put equal
weight on all collected data. The initial value R(0) used in the simulation is
a 10 x 10 diagonal matrix with ten repeated diagonal elements of value 1000.

The integration step in the following simulations is 1 msec.

6.4.5 Simulation Results on a 3-Link Manipulator Model

The first model simulation results are reported in the following fig-
ures. Figures 6.4 (a), (b), and (c) are the traces of nominal joint displace-
ments. Notice that the desired and actual displacements are separated by
an initial position error. Figures 6.4 (d), (e), and (f) are link deformations,
where the final steady state deformations in (d) and (e) are due to gravitation
force. Figures 6.4 (g), (h), and (i) are control voltages of joint 1 to 3. Figures

6.4 (j) to (s) are plots of exact and estimate of payload inertia, and Figure 6.4
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(t) shows the sum of the diagonal element, or trace, of R, as an examination
of persistent excitation. As discussed before, for o = 0, R™! grm&;s rapidly
under persistent excitation, hence R and its trace diminishes swiftly and ide-
ally becomes zero. However, the reduction of the trace of R in Figure 6.4 (t)
stops at 706.7, hence the system is not properly excited in this case, therefore
estimation results are impaired. In Figures 6.4 (j) to (m), estimates of mass
and center of mass location approach actual values, but estimates of moment
of inertia in Figures 6.4 (n) to (s) fail to reach exact values, which means that
in the controlled motion payload is insufficiently activated to reflect its true
value. Since the simulated model is a three-link manipulator without wrist,
the gripper has limited angular movement to probe the moment of inertia
of payload, therefore, little information could be collected to reconstruct the
truc identities. In the next case, a six DOF manipulator is simulated, which
will show improved estimation of moment of inertia with additional angular

movement of the wrist.
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6.4.6 Case 2: Simulation on a 6-Link Manipulator Model

The second case simulates the motion control of a six DO manipu
lator modeled with three lumped link compliances as depicted in Figuve 6.5.

The parameters of this model are listed in the following tables.

Table 6.7 G6-Link Model Kinematic Parameters
Link Length (m) | Center of Mass (m) Offsct
(x, ¥, 2) (x, ¥, 2) Angle (deg)
Link 1 (0, 0, 0.8128) (0, 0, -0.4318) 0
Link 2 (1.1776, 0, 0) (0.508, -0.0254, 0) 90
Link 3 (0, 0,0) (0.1016, -0.1778, 0) 0
Link 4 (0, 0, 1.397) (0, 0, -0.508) 90
Link 5 (0, 0, 0) (0,0, 0) -60
Link 6 (0, 0, 0.1524) (0, 0, -0.1016) 60

Table 6.8 6-Link Model Inertial Parameters

Mass | Moment of Inertia ( kg.m?)
(kg) (Lzzy Ly, I,.)
Link 1 | 317.5 (0, 0, 29.3)
Link 2 | 680.4 (5.9, 52.7, 43.9)
Link 3 | 453.6 (49.7, 7.61, 49.7)
Link 4 | 68 (0.59, 0.59, 0.35)
Link 5 | 36.3 (0.23, 0.23, 0.06)
Link 6 | 27.2 (0.12, 0.12, 0.06)
Table 6.9 6-Link Model Actuator Parameters
Jomt 1 2 3 4 | 5 6
Incrtia (1073 - kg - m?) 42121}121(13({13]08
Damping (N - m/(rad/s)) 04104103}04({03|03
Resistance (ohm) 08(08]08|08[08]0.8
Torque Constant (volt/(rad/s)) | 20 | 20 | 14 1 11 | 8 | 8
Gear ratio 100 | 100 | 100 | 80 | 30 | 10
Back emf Const. (N -m/amp) [ 05]05(04]03]03)0.2

and the gain matrix are: I, = diag((7)s], K10 = diag[(12)¢], K,p = diag[(3)s],
and K5 = diag[(2)s). R(0), a, and stiffness matrix are the same as the last
simulation, and ¢ = 0. The nominal trajectories and initial states are given

in the next table.
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Figure 6.5: Six-Link Robot Modeled with Three Link Compliances
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Table 6.10 6-Link Model Trajectory Parameters
ty(sec) | Ab(deg) [ 6.0 | 6o | 6o~ 00
Joint 1 10 60 0 |10 10
joint 2 10 70 0 |10 10
Joint 3 10 50 0 |10 10
Joint 4 10 40 0 {10 10
Joint 5 10 50 0 |10 10
Joint 6 10 60 0 |10 10

Two sets of initial estimates are tested on this model. The first set has zero

initial estimates as shown in the next table.

Table 6.11 Actual Payload parameters and Initial Estimates
m |mry |mry | mr, | Do | Loy | Lo | Ly | Lye | 1pe:
9
0

a1-10(t=0)| 0 0 0 0 0 0 0 0 0

The second set has overestimated initial values as listed in the following table.

Table 6.12 Actual Payload parameters and Initial Estimates
m | mry |\ mry | mr, | Ly | Lzy | Lz | Ipyy Ly, | I,

aj_io 90 9 9 9 10 5 5 10 5 10
dio10(t =0) [ 120 | 18 18 18 | 15 8 8 15 8 15

The purpose of using two sets of data is to test the controller’s adaptive ca-
pacity to different initial estimates. Besides that a comparison of both results
will give a better understanding on the phenomenon of persistent excitation
and how estimation affects controller performance. Both simulations follow
the same steps listed in the three-link case and the results are presented in
Figures 6.6 (a) to (z). In order to produce a compact presentation, each
figure carries two sets of data where a solid line represents response of zero
initial case and a broken line indicates performance of overestimated case.
Figures 6.6 (a) to (f) show nominal joints-1 to 6 tracking errors, i.e., § — 6,.
In these figures, the initial positional errors are deliberately arranged accord-

ing to Table 6.10 to test controller tracking capability. Figures 6.6 (g) to (i)
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are vibratory mode deflections. The input voltages are displayed in F igures
6.6 (j) to (o). Figures 6.6 (p) to (y) are estimate errors, &, of ten payload
inertial parameters, and Figure 6.6 (z) is the trace of R which is treated as an
indicator of persistent excitation. From the nominal and vibratory motions
in Figures 6.6 (a) to (i), controller stability is verified. Additionally, estimate
convergence is revealed from Figures 6.6 (p) to (y) where estimate errors ap-
proach zero in the first 1.67 sec. Also, the trace of R reduces form 10,000 to
less than 32 for zero initial case and 220 for overestimated case at the same
period of time. Both traces of R keep decreasing until reaching a value 4
for zero initial case and 16 for overestimated case. As stated before, for a
persistently exciting system, R will become zero eventually. Therefore, in the
six-link model, the controlled system is persistently exciting, which is essen-
tial to the convergence of the payload estimates. Such results are in contrast
to that of the third-link case where the trace of B stops at 707 and payload es-
timates fail to converge, especially the moment of inertia values. Apparently,
the wrist in the six-link model generates additional angular motion crucial to
the excitation of the moment of inertia contents. Such connections provide
us an insight of the relationship between system physical motion and exci-
tation conditions required by analytical estimation. Despite the satisfactory
performance of both zero initial and overestimated cases, some observations

regarding simulation results will be discussed below.

For the first three joints, both cases show almost identical response
as displayed in Figures 6.6 (a) to (c), but the difference shows up in the wrist
motion according to Figures 6.6 (d) to (f) where the zero initial estimate
case suffers a large overshoot especially within the first two seconds. Similar
distinctions also appear in the actuator control voltages shown by Figures 6.6

() and (o). Such results are due to a substantial payload inconsistency be-
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tween the model and plant. By comparing Tables 6.8 and 6.11, the mass and
moment of inertia of links 4, 5, and 6 are far less than actual payload values,
so payload dominates the dynamic effect of wrist motion. Furthermore, in
the motion control payload is uncertain and estimated on-line, therefore wrist
control becomes sensitive to estimate precision. According to Figures 6.6 (p)
to (y) results, the first two seconds is the transient period of estimation in
zero initial estimate case, depicted by solid line, yields large estimate errors.
Inevitably, the wrist motion is affected in this transient period. Interestingly,
the vigorous wrist overshoot of the zero initial case accidently creates better
excitation to payload than that of the overestimated case, therefore, the for-
mer has a smaller and faster declining R value as shown in Figure 6.6 (z).
By contrast, the inertia of the first three links are substantially larger than
payload magnitude, therefore their motion controls are robust to imprecise
estimates. However, both zero initial and overestimated cases have similar
structural deflections, and the steady state deflections in Figures 6.6 (g) to
(h) are due to the weight of the structure. Notice that in Figures 6.6 (p)
to (s) mass and center of mass location estimates converge to actual values
quickly, similar tendencies are also observed from three-link case results, i.e.,
Figures 6.4 (j) to (m). Obviously, payload mass is easy to excite and could

be estimated precisely in few time steps.
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Figure 6.6: Adaptive Control of a 6-Link Robot with Zero Initial

Estimates (Solid Line) and Overestimated Initial
Values (Broken Line)
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6.5 Effect of Update Rate on Adaptive Controller Per-
formance

In the real-time implementation of the designed adaptive control al-
gorithm, controlled system response will be affected by update delay. Since
robotic dynamics are highly nonlinear, computation of dynamic parameters
demands finite amount of time. Details of real-time computation of robot
dynamic parameters are reported by (Wander and Tesar, 1987]. In physical
implementation, the controller has to use a sequence of periodically updated
dynamic parameters instead of continuously updated information to generate
control command. Consequently, the update interruption creates a distur-
bance to the stability of the proposed controller and affects the controlled
system response. In this section, update rate effect on controller performance
will be analyzed, and from the analyzed results suggestions will be given to
remedy the update disturbance. In the following analysis, subscript o denotes

a updated value, and A indicates an update rate error at every instance.

In Equation 6.78 the control input u is composed of
U =1u + (%] (6114)

Now, u; defined in Equation 6.79 is replaced by a periodically updated form
given by

wi = [Ar £ [ gj ] + (o + [As £ [ gj

where the subscript o indicates a given update value. With this new u;, the

] + (F1)uo (6.115)

system dynamics in Equation 6.82 become

Al ZT ég _ U - A]
3 5]8) L] omsi 5] oo
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where A; represents an error of Equation 6.82 due to update delay and is

defined by

8,
6,
.

Then, this error is transported to the time derivative of the Lyapunov function

2 T
AIZ}
2z e
S A |

- 1
al(R-1)a - 5pZ24 (6.118)

Ay = ([Al ETko — [Ar ET]k) [ 6 ] + (f1)ko — (f1)x

+‘ ([Al 2T]uo - [Al ZAJT]u) [ ] + (fl)uo - (fl)u (6117)

given by Equation 6.93, that is

o _ T U2 Al 1 Al ET 1
V = pe {[—I{,B—S1J+[0}+§[S Az ke+-2-

+pe’Za+a"R'a +

DI

Accordingly, u, originally given in Equation 6.94 is now constructed by up-

dated parameters shown in the following equation
1.. . T 1+ =T
Ug = Uz — —2—[A1 Y ]koe - §[A1 > ].we (6.119)

this new definition reduces Equation 6.118 to

v T ug | D+ A,
Vo= e [—Kﬂ—sl+sz]+”e [ 0 ]

-1 -1 1
+al(R1'a— Epif + pZTe) — EaéTR_lé + §6T€ (6.120)

where
1,. . ..
A = —5 ((As £ — [Ay ST)4) e
1 2 2T 2 2T
= ([A1 2~ [h £ ]u) e (6.121)

In the adaptive controller design, us is initially solved from the equation

egug +71=0 (6.122)




288

now, the solution is updated by

uz = _egeg €s (6.123)
with 7,, defined by
where
Gd A n Od
Slo - [E A2] + (f2)ko + [E AZ]uo + (fZ)uo
Ba B
1.. . 22
So0 = 315 A + %[z Aslue (6.125)

which creates an error Az to Equation 6.122, i.e.,

egus+n = 65(510 - 51— 8% + 52)
= Aj X (6.126)

where
A3 = 65(510 — Sl - 520 + 52) (6127)
With the additional errors, Equation 6.120 becomes
V o= —ajele + pAs + pegT(Al + Aj)

| 1 . |
+al(R'a- Eng +pZTe) - §paTR"la + §€T€ (6.128)

The analysis is now focused on the parameter estimation part in the above V
equation which is also affected by update delay. According to Equation 6.98,

the parameter estimation increment is computed by the update form

: 1 ,
a= Ro(ipZ;"; —pZle—ZTe,) (6.129)
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whose effect on the original design is derived below
~ -1 1 )
a'(R™'a— 5,0227" + pZTle)

= TR R(302] - pZle — Ze,) — 1pZT + p2Te
1
5
= 5T[R‘1/-\R(-;-pZzTo — pZie — Z8e,) + %(pZzTo —pZ])

T 1
= &'[R(R+AR)(3pZ3, - pZle — ZLe,) ~ =pZT + pZTe]

+ (_pzljc; + leT)e + (‘Zg; + Zg)501 - g‘Tdeo
= alpAs+aTA; —<Te (6.130)

where errors AR, A4, and Ag are

AR = R,—R
Ay = %R-IARzg; — R 'ARZIe + %(Z;{, ~Z7)—(ZF - Z1e
As = —RIARZG e, — (28— Z])e, — ZX (e, — €)
= —R7'ARZLe, - AZIc, — ZTAc (6.131)
with

AZy = Zo~ Z
Ae = g, —¢ (6.132)
A substitution of these results into Equation 6.128, V results in
V = —aele-— l,oéiTR'l:?l - leTe
! 2 2
+ p[Ag + Cg‘(Al + Az) + éTA4] + éTAs (6133)
Apparently, the errors caused by periodical update will create additional un-
certainty on the stability analysis of V. However, since p is a control param-

eter decided by users, it could be very small to reduce the error term

plAs + eZ(Al + A;) + 5TA4]
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in the above V expression, which suggests that p could serve as a parameter
to improve controller performance. Besides this new function, small p has also
been used to enhance parameter estimation precision in earlier case studies.
But the V in Equation 6.133 is still under the influence of aTA;s where A
is defined in Equation 6.131. Since Aj relates primarily to the update errors
of R, Zy, and ¢, they are further analyzed in the followings. Recalling the
definition of Z’ in Equation 6.62 that

@ [ (o] L erom
- [ (el )
LElR) ) )

and also from Equation 6.84 -

w3 XL THE
- [ [8 T2,
gj%ﬁhﬂQﬂMH%MLﬂﬂﬁ

In order to remove the acceleration dependence of Z|, and U}, two integrations

over time are executed which produce

Zoy = /(Z{)+AZ())dt
Y Zo+AZ, (6.136)

U, = / (U’ + AU")dt
o y4AU (6.137)
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where A(-) represents a update error. Finally, the update errors of ¢ and R

N

from Equations 6.85 and 6.48, are

&, = ZOoé— Uo
= (Zo+AZy)a— (U + AU)
= (Zoa—U)+(AZoa - AU)

et Ac (6.138)

R, = oR,—R,ZLZIR,
= 0R,— R,(Zo + AZ)T(Zo + AZ)R,
= oR, — R,(Z§ Zo)R, — R,(AZT)(2,)R,
~Ro(Z5)(AZo)R, — Ry(AZT)(AZo)R, (6.139)

and

AR=R,- R

Unfortunately, from the above analytical results, no free parameter like P
could be chosen to reduce the effect of AR, AZ,, and Ac on As and hence
on V values given in Equation 6.133. Furthermore, a small p as suggested
above means that the estimation process in Equation 6.129 behaves like a
least square method result which is also affected by the errors of R, Z,, and
. So some practical approaches must be adopted to solve these problems.
One solution proposed here is to stop estimation once the system ceases per-
sistent excitation. The reason is that when the system stops excitation, the
matrix R and its computed value R, are small and ideally zero, so the error
AR is small. Also, the previous case study shows that payload estimates
approach to the exact values when R stops decreasing. This means that ¢

and ¢, and therefore Ae are almost zero. Hence the resultant As is small,
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consequently its effect on V in Equation 6.133 is reduced. One question left
to be answered is what criterion should be used to decide that a system has
ceased excitation. In the previous case studies, the trace of R is used as an
indicator of persistent excitation, so the decrement rate of the trace could
serve the purpose. Practically, when the decrement rate of the trace is less
than a predefined value, the estimation process is'stopped and the controller
will use the last payload estimates to compute control command for the rest

of motion.

6.6 Case Studies with 100 Hz Update Rate

The update effect will be demonstrated on the six-link model. Again,
both zero initial estimate and overestimated examples are repeated except
that now control parameters have a 100 Hz update rate while the integration
step remains 1 msec. All system and control parameters are the same as
before. The major changes are that R(0) has a value 10,000 for its diagonal
elements and p = 0.000001 is used to reduced update disturbance. In both
simulations, the estimation is terminated when the trace of R, has a decre-
ment less than 0.5 over an update step. This 0.5 value is sélepted based on
our experience from previous simulation results. Notice that R(0) is 10 times
the value used in the last case study. This selection is to have a better ap-
proximation to the exact R(0) which is actually an infinite matrix. However,
it should be pointed out that a large R(0) will make estimation too sensitive
to initial estimation errors. Both simulation results are reported in Figures
6.7 (a) to (z). In each figure, a solid line represents the zero initial estimate
case result, and a broken link depicts the overestimated case response. By

comparing Figures 6.7 with Figures 6.6 where update effect is omitted, it
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appears that by choosing a small p and terminating estimation the update
rate disturbance is reduced. The simulations results in Figures 6.7 are similar
to that in Figure 6.6. The major differences are that the moment of inertia
estimates in the overestimated case do not converge to the exact values when
estimation is terminated, as indicated by the broken lines in Figures 6.7 (t) to
(¥). According to simulation data, the zero initial case ceases estimation at
1.07 sec where the trace of R is 41.9; the overestimated case stops estimation
at 1.89 sec where the trace of R is 147. Again, the zero initial estimate case
has better excitation than that of the overestimated case, which is due to the
large overshoot of wrist motion shown in Figures 6.7 (d) to (f). The case
study results confirm our suggestion that update delay impact on adaptive
controller performance could be remedied by using small p and termination

of estimation.
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6.7 Comparison Between Adaptive and Non-Adaptive
Control

In order to illustrate the merit of adaptive control in uncertain sys-
tems, we conduct the following comparison. Now, the parameter estimation
in Figure 6.2 is disconnected from control system. Therefore, by setting
4 = a = 0 for all £, the above adaptive controller becomes a regular con-
troller built for the system with well-known inertial parameters including the
payload. Without the parameter estimation, the new regular controller is em-
ployed to control the six-link model with overestimated payload. This means
that the regular controller constructs control commands using a set of payload
values that are larger than exact values. The simulation results are displayed
by solid line in Figures 6.8 (a) to (f) for nominal mode tracking errors, Figures
6.8 (g) to (i) for link deflections, and Figures 6.8 (j) to (o) for control voltages.
For comparison purposes, the adaptive control results of the overestimated
case are also presented by broken line. Apparently, without adaptive effort,
the regular controller has very poor performance in this case. The overshoots
of wrist motion and the residual oscillation of 83 in Figures 6.8 (i) are un-
acceptable. Also, the wrist controlv voltages are beyond reasonable values.
However, another aspect regarding this example is that without proper de-
sign a controller might bring system instability to our studied models, which
means that the examples used in this report are not intrinsically robust. A
carelessly designed controller would fail the assigned control task. Of course,
according to the Chapter 5 results, a well-designed robust controller which
contains no adaptive loop is applicable to a system with uncertain param-
eters. Therefore, experimental work should be conducted to compare the
performance between adaptive and non-adaptive controllers. Some compar-

ison criteria are suggested below, which are general for rigid and compliant
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robotic systems:

10.

11.

. settling time: nominal motion and residual oscillation

. reference motion tracking precision

required actuator energy

. capability of uncertainty estimation
. estimation convergence speed of adaptive algorithm

. real-time computation effort

robustness to unmodeled disturbance
applicability to compliant structure
applicability to modularized structure
required on-line measurement

tuning capability such as selection of poles in PID, P matrix in the

Lyapunov function, p in the adaptive control law, and so forth.

For a given robot and task, different control algorithms should be tested ex-

perimentally. The results could be tabulated in a matrix format following the

above listed criteria. This table will help users to choose the best controller

for a specified task. Unfortunately, due to nonlinearity of robot dynamics,

selected control parameters like PID gains or the P matrix are difficult to

parameterize explicitly to analyze their effects on controlled system perfor-

mance. So, one experimental result could not be extended directly to another
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task. Therefore, a collection of various task results will be very useful to cre-
ate a general table containing different controller performance, which conld

serve as an indicator of the preferable control algorithm for a given task.
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6.8 Summary

In this chapter, the Newton-Euler and Lagrange methods are intro-
duced to extract link and payload inertia terms from nonlinear and coupled
manipulator dynamics. By doing so, the final dynamic formulation could be
expressed as a linear equation in inertial parameters composed of mass, cen-
ter of mass location, and moment of inertia of individual link and payload.
Based on this linear relation, a least square method is introduced to estimate
the constant but uncertain inertial parameters. The results could be applied
to on-site calibration of lumped manipulator inertia when drift of modeled
values is suspected or calibration is required for a new assembled modularized
structure. The convergence of the least square method is shown by a Lya-
punov type function and a direct integration of estimate for a persistently
exciting system. The requirement of persistent excitation to ensure accuracy

of estimate is also discussed.

For compliant manipulators carrying an uncertain payload, an adap-
tive algorithm is introduced to control nominal tracking, vibration elimina-
tion, and on-line payload estimation. The adaptive control law is applicable
to rigid robotic manipulators as well as lumped and distributed compliant ma-
nipulators. Three computer simulations are reported to verify the designed
results. The first simulation is conducted on a three-link robot modeled with
three lumped link compliances. In this case study, convergence of estimate 1s
impeded due to the limited angular movement of the gripper. To verify this,
the second and third simulations are performed on a six-link robot where
wrist motion is implemented. The six-link robot is also modeled with three
lumped link compliances. With the additional wrist motion, the system 1is

well excited and payload estimates converge to exact values swiftly. The sec-
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ond and third simulations have distinet initial estimates, whose purpose is to
test adaptive capacity of the proposed controller. The relationship betwecen
persistently exciting condition and physical motion is observed from a com-
parison between both simulations. In both three-link and six-link examples,
nominal motion tracking and vibration elimination are satisfactorily executed

by the adaptive controller.

In physical implementation, real-time computation delays create a
disturbance to the proposed control algorithm which is developed based on
continuously updated information. In order to remedy the update delay dis-
turbance, update delay effect on adaptive controller stability is analyzed.
According to the analyzed results, a small p and termination of estimation
once system ceases excitation are recommended to reduce the update de-
lay impact. Case studies are conducted to verify the suggestion. Finally,
comparison between adaptive and nonadaptive control laws are illustrated
through an example simulation. Several criteria are proposed to compare
between adaptive and nonadaptive controllers. It is suggested that different
controllers should be tested experimentally over various tasks in order to con-
struct a performance table that assists users to select the best controller for

a specified task.




Chapter 7

Summary and Discussions

In this report, we have presented a systematic analysis of compliant
manipulators which covers dynamic modeling, property investigation, and
both regular and adaptive control algorithms. In the first chapter, we sur-
vey and categorize more than ninety recently published reports which are
dedicated to building an efficient, lightweight manipulator that has a large
payload-to-weight ratio and capable of undergoing high speed and precise op-
erations. Due to nonlinear interactions between robot nominal motion and
structural oscillations, the goal of building a general lightweight robot is a
difficult and slowly developing task. At this stage, many researchers still con-
duct primitive experiments on simple compliant structures such as one-link
arms in order to gain insight in dynamic modeling and control problems. Ad-
ditionally, most of the studies are aimed for spatial applications such as the
Spatial Shuttle Remote Manipulator System (RMS) which works in a zero-
g environment where structural inertia is not the main concern. Therefore,
most one-link models are so light that they can not even support their own
weights, hence the experiments are limited to horizontal movements to avoid
gravity effects. So far, a small number of studies, e.g., [Rivin, et al., 1987]
and [Liao, Sung, and Thompson, 1987], are devoted to improve physically
industrial manipulator structural design by using composite components or

materials to reduce link weight while maintaining good rigidity. Other than

320
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that studies of lightweight industrial robots are still in analytic and numerical

simulation stages.

In order to create a valid description of flexibility dynamics, ex-
perimental works have been conducted to verify two mostly used compliant
models: distributed and lumped parameter models. For example, [Tsujisawa
and Book, 1989} have used a distributed parameter model on a two-link robot,
and [Behi, 1985] has developed a lumped parameter model for a Cincinnat;
Milacron T3-776 robot. The former shows that the link lateral deﬁection;
could be depicted properly by the first two fundamental modes. However,
the first mode amplitude is about ten times of the second mode. Similar
results are also indicated by [Yang and Donath, 1988]. Both reports sup-
port the assumption used by lumped parameter model that the first mode
dominates structural deformation and hence it is the only mode modeled to
create simple but reasonably accurate dynamic equations. In order to retain
physical reality, the spring stiffnesses used in lumped parameter models are
actually evaluated from laboratory experiments as reported by [Sklar, 1988],
[Elmaraghy and Johns, 1988], [Behi, 1985], and [Good, Sweet, and Strobel,
1984]. From these experimental results, it is discovered that even in lumped
parameter models only finite salient modes could be triggered. Therefore,
instead of using seven decoupled vibratory modes (i.e., one joint compliance,
three link end-point deflections, and three link end-point twistings) to define
lumped compliances of a flexible link, generally, only joint compliance and two
principal plane deflections are considered in lumped parameter models. Link
lateral deflections are also the major considerations in most of distributed
parameter models. Therefore, in this report, we choose robot upper arm and

£
forearm lateral deflections as the major link compliances in our case studies.
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Based on availability of payload information, we propose two algo-
rithms to control compliant manipulators: one is built on well-known system
parameters, or regular controller, and the other is designed to adapt payload
uncertainty, or adaptive controller. Both controllers are built on general sys-
tem dynamic equations that are common for both distributed and lumped
parameter models. Also, in order to maintain controller generality, neither
nonlinear terms are neglected nor linearization is used to-simplify the con-
troller design. In the regular controller, we test the controller robustness by
introducing uncertainty in payload description during the case studies. By
choosing stable feedback gains and proper P matrix, the regular controller
maintains system stability even under incorrect payload information and ini-
tial position errors. However, as payload uncertainty increases and becomes
a dominant factor, the regular controller performance degrades. To remedy
this problem, an adaptive controller is introduced to undertake payload un-
certainty. By using the fact that system dynamics are a linear function of
inertial parameters, the uncertain payload is estimated on-line with the as-
sistance of the least square estimation method. One requirement of ensuring
estimate convergence is the persistently exciting condition which, as we point
out through case studies, is correlated with the system physical motion. That
is, if an uncertain parameter is not activated appropriately during a controlled
motion, the estimator can not collect enough information to reconstruct the
true identity. This observation indicates that for off-line system parameter
calibration, laboratory engineers need to test the trajectory carefully in order

to excite all parameters which are to be calibrated.

One problem discussed in this report is the effect of update delay on
the performance of adaptive controller. In real-time implementation, compu-

tation delays create a disturbance to the adaptive controller which is built
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on continuously updated signals. Therefore, the effect of update delay on
controlled system stability is analyzed, and suggestions are given to eliminate
update delay disturbance on controlled system response. Another important
issue, a comparison between adaptive and nonadaptive control methodologies,
is also demonstrated through example simulations. Of course, a case study
can not represent a general comparison between adaptive and nonadaptive
controller performances, especially for a nonlinear system where controller
parameters such as the PID feedback gains and the P matrix are coupled
with system parameters in the final controlled system response. Hence, ex-
periments need to be conducted to demonstrate controller capability under
different tasks and uncertainties. We list several criteria to compare experi-
mental results, which will help the user to choose the best controller suited

for a given task.

Another way of solving the update delay problem is to design the
controller based on a discrete time dynamic model and then to synchronize
both computation and control update rates. However, it is difficult to convert
nonlinear robotic dynamics from continuous time to discrete time description.
Although, Euler’s method is often used to approximate the conversion, it is
limited to slow varying systems. Hence, one solution is to write system dy-
namics in terms of an autoregressive and moving average (ARMA) model
with uncertain coefficients. Then self-tuning regulator (STR) could be ap-
plied to stabilize the uncertain system either by pole placement technique
or one-step ahead optimization. In STR, the uncertain ARMA model coeffi-
cients are estimated on-line and used in constructing control command. The
drawback of STR method is that ARMA model coefficients must vary com-
paratively slower than the STR update rate, otherwise, STR can not produce

accurate estimates to generate the desired control command. Also, STR es-
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timates ARMA model coefficients at every update step, so unless a simple
relation such as linear proportion exists between payload uncertainty and es-
timated coefficients, it is difficult to extract payload identity from estimated
coeficients, which means that for nonlinear systems, STR could accomplish
adaptive control assignment but might not be able to provide exact uncer-

tainty information.

In both regular and adaptive control approaches, we encounter one
problem that the Lyapunov stability is not ensured when all nominal error
states become zero but vibratory error state remains active. This unique
character of compliant manipulators is due to dimensional mismatch between
the number of available actuators and that of modeled degrecs of freedom.
Since passive vibratory modes are added to compliant system dynamics, their
elimination relies on the regulation of nominal motion, which means that
controller has to transmit damping action through nominal joints, so nomi-
nal joints have the responsibility of eliminating structural vibration instead of
just trajectory tracking. In the controller design, it is possible to disturb nom-
inal tracking precision deliberately in order to obtain the Lyapunov stability.
However, that is not an effective tradeoff, therefore, in both controllers, we
propose methodologies to reduce the size of the spherical ball in error space
where the Lyapunov stability is uncertain. In doing so, residual oscillation
is left to be dampened passively by structural damping. In case residual os-
cillation scale becomes intolerable, then a second phase controller could be
employed to reduce residual oscillations. Now, the regular or adaptive con-
troller designed before acts as the first phase controller that concentrates on
trajectory tracking and vibration elimination. Once the nominal joints get
closer to the terminal point and the error states approach the spherical ball

that the Lyapunov stability is uncertain, then the second phase is switched
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on. The second phase controller could be built on different control criteria,
for example, one such second phase controller could be the optimal controller

presented below.

From our earlier case study experience, it is observed that in the
vicinity of terminal steady state, the velocity states remain relatively small.
Therefore, it is assumed that all coupling terms are negligible and gravity
effect is compensated at terminal state, then, in the vicinity of the terminal
point, the flexibility dynamics in Equation 4.9 could be approximated by the

following linear time-invariant form

6] [ A cT
BRI
where A; = A,(6,) € R™*me, C = C(6,) € R"e*"e | A, = Ay(6,) € Rrs%xns,
and 6, = 6(t;) is the terminal state of nominal joint in which ¢, is the fi-

nal time. In the above equation, A;, A;, and C are constant submatrices

evaluated at the terminal state with no vibrations. Defining

e 0
g= g € R¥netme) s g = g(ty) = g (7.2)
B 0
Equation 7.1 could be expressed as
0 7 0 0 0
0 0 -CTK 0 + A,
oo o z|% o |*
0 0 -AK 0 C
& Ag+ Bu (7.3)

where A is a 2(ng + ng) x 2(ng + ng) matrix, B is a 2(ng + ng) x ng matrix, 7'

is an ngy X ng identity matrix, and I” is an ng X ng identity matrix. Now, the
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goal is to control ¢ to reach ¢, at t = t; and minimize a cost function given
by

t T T

J= /t {(g—&)"S(g~ g) +uTWu}dt (7.4)

0
where 1y is the time optimal control starts, and S and W are two positive
definite, diagonal matrices with § = ST € R2retns)XAnotns) and W = W7 ¢
Rrexns  According to [Bryson and Ho, 1975], Equation 7.4 is an optimal

control problem with fixed terminal time and specified state variables, and

one optimal solution is given by
u=WYBT)+ BT3Tv) (7.5)
where X is the Lagrange multiplier defined by
A = —ATA—-28¢-28q,
AMto) = 0; A € RUretns) (7.6)

Because ¢ is not specified at t = to, A(t¢) = 0 is chosen in the above equation.

Also, the @ in Equation 7.5 is given by
B(t,to) = —®(t,t0)A
B(to,to) = I € R¥Umetna)xneing) (1.7)
which is the transition matrix used in formulating the solution of ¢ given by
alt) = B(t, to)alto) + [ “®(t,5)Bu(s)ds ; to < t <1, (7.8)
Finally, the v in Equation 7.5 is defined as

y = _W;1¢€R2(ng+nﬂ)

W, = [’ @BBT@Tdt € R¥retna)x2(notne)

to

t
/ " $B(Wu + BT\)dt € R¥ne+no) (7.9)
to

©
I
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where W, is called controllability grammian and is nonsingular for a control-
lable system in Equation 7.3. Since Equations 7.5 and 7.9 need to be solved
iteratively, an off-line evaluated v value could be used in computing on-line
the u given by Equation 7.5. Actually, t; could be free in order to obtain
a minimum settling time control, yet, that will introduce another control
parameter needed to be decided iteratively. Therefore, fixed time optimal

control is chosen here.

Additionally, in this report we introduce a special characteristic of
compliant manipulators that has seldom been noticed. This is the inaccessi.
bility problem of vibratory modes. According to the analysis in Chapter 4,
manipulator configuration affects actively damping of structural oscillations.
It is suggested that the inaccessible positions of a compliant manipulator
should be identified before trajectory planning so that undesired working
positions can be avoided. Also, since the first mode dominates structural de-
flections, lumped parameter model will be an efficient and effective approach

to study the inaccessibility problem.

Due to the complexity of compliant manipulators, this report only
investigates some of the dynamic and control problems. There are some issues

of compliant manipulators that need further study, which are listed below:

o development of lightweight robot designs for industrial applications
e comparison between lumped and distributed parameter models
e kinematic interpretation of vibratory mode inaccessibility

e interconnection between the inaccessibility of the first mode and that

of higher order modes -
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e compensation of robot structural deflections by adjusting joint motions
e experimental verification of regular and adaptive control algorithms

¢ improvement of regular and adaptive controller performance by intro-

ducing the second phase controller
e criteria for the selection of regular and adaptive controllers

e implementation of micromanipulators to perform on-line compensation

of structural deflection

e incorporation of adaptive control with learning control to build an ac-

curate system model for systems containing uncertain parameters

These research topics require considerable effort, but they will certainly make

lightweight manipulators become much more precise and efficient machines.
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